{"title":"A DFT study on spring property of helicenes","authors":"Xunshan Liu, Xingyuan Cui, Xu Zhang, Jian-Ping Wu, Chengshuo Shen","doi":"10.1007/s00214-024-03093-1","DOIUrl":null,"url":null,"abstract":"<p>This study focuses on investigating the spring properties of helicenes through DFT theoretical calculations. The energy change during stretching was observed by incrementally scanning the distance between both ends of the helicene from its stable state. The stiffness (<i>k</i> value) of each helicene was also determined at different stretching states. Interestingly, the <i>k</i> value was found to be non-constant during stretching, suggesting that helicenes do not behave as ideal springs. Furthermore, the effects of heteroatom doping and lateral <i>π</i>-extension on [6]helicene were examined, indicating that these factors have minimal impact on the spring nature of helicenes. Additionally, the study extended to longer helicenes, namely [12] and [18]helicenes. It was observed that the stiffness at the middle part of the helicene is greater than at the terminal parts, and the helical structures begin to collapse when the stretching length reaches approximately 2.5 times the stable state. We expected this work could bring innovative concept in future design of molecular devices.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1007/s00214-024-03093-1","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
This study focuses on investigating the spring properties of helicenes through DFT theoretical calculations. The energy change during stretching was observed by incrementally scanning the distance between both ends of the helicene from its stable state. The stiffness (k value) of each helicene was also determined at different stretching states. Interestingly, the k value was found to be non-constant during stretching, suggesting that helicenes do not behave as ideal springs. Furthermore, the effects of heteroatom doping and lateral π-extension on [6]helicene were examined, indicating that these factors have minimal impact on the spring nature of helicenes. Additionally, the study extended to longer helicenes, namely [12] and [18]helicenes. It was observed that the stiffness at the middle part of the helicene is greater than at the terminal parts, and the helical structures begin to collapse when the stretching length reaches approximately 2.5 times the stable state. We expected this work could bring innovative concept in future design of molecular devices.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.