Global solution of quadratic problems using interval methods and convex relaxations

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Sourour Elloumi, Amélie Lambert, Bertrand Neveu, Gilles Trombettoni
{"title":"Global solution of quadratic problems using interval methods and convex relaxations","authors":"Sourour Elloumi, Amélie Lambert, Bertrand Neveu, Gilles Trombettoni","doi":"10.1007/s10898-024-01370-8","DOIUrl":null,"url":null,"abstract":"<p>Interval branch-and-bound solvers provide reliable algorithms for handling non-convex optimization problems by ensuring the feasibility and the optimality of the computed solutions, i.e. independently from the floating-point rounding errors. Moreover, these solvers deal with a wide variety of mathematical operators. However, these solvers are not dedicated to quadratic optimization and do not exploit nonlinear convex relaxations in their framework. We present an interval branch-and-bound method that can efficiently solve quadratic optimization problems. At each node explored by the algorithm, our solver uses a quadratic convex relaxation which is as strong as a semi-definite programming relaxation, and a variable selection strategy dedicated to quadratic problems. The interval features can then propagate efficiently this information for contracting all variable domains. We also propose to make our algorithm rigorous by certifying firstly the convexity of the objective function of our relaxation, and secondly the validity of the lower bound calculated at each node. In the non-rigorous case, our experiments show significant speedups on general integer quadratic instances, and when reliability is required, our first results show that we are able to handle medium-sized instances in a reasonable running time.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-02-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10898-024-01370-8","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Interval branch-and-bound solvers provide reliable algorithms for handling non-convex optimization problems by ensuring the feasibility and the optimality of the computed solutions, i.e. independently from the floating-point rounding errors. Moreover, these solvers deal with a wide variety of mathematical operators. However, these solvers are not dedicated to quadratic optimization and do not exploit nonlinear convex relaxations in their framework. We present an interval branch-and-bound method that can efficiently solve quadratic optimization problems. At each node explored by the algorithm, our solver uses a quadratic convex relaxation which is as strong as a semi-definite programming relaxation, and a variable selection strategy dedicated to quadratic problems. The interval features can then propagate efficiently this information for contracting all variable domains. We also propose to make our algorithm rigorous by certifying firstly the convexity of the objective function of our relaxation, and secondly the validity of the lower bound calculated at each node. In the non-rigorous case, our experiments show significant speedups on general integer quadratic instances, and when reliability is required, our first results show that we are able to handle medium-sized instances in a reasonable running time.

Abstract Image

利用区间法和凸松弛法求解二次函数问题的全局方案
区间分支与边界求解器为处理非凸优化问题提供了可靠的算法,它能确保计算结果的可行性和最优性,即与浮点舍入误差无关。此外,这些求解器还能处理各种数学算子。然而,这些求解器并非专门用于二次优化,也没有在其框架中利用非线性凸松弛。我们提出了一种能高效解决二次优化问题的区间分支与边界法。在算法探索的每个节点上,我们的求解器都使用了与半有限编程松弛同样强大的二次凸松弛,以及专门针对二次问题的变量选择策略。这样,区间特征就能在收缩所有变量域时有效传播这些信息。我们还建议使我们的算法更加严格,首先证明我们的松弛目标函数的凸性,其次证明在每个节点计算的下限的有效性。在不严格的情况下,我们的实验表明,在一般的整数二次方程实例上,我们的算法明显加快了速度;在要求可靠性的情况下,我们的初步结果表明,我们能够在合理的运行时间内处理中等规模的实例。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信