{"title":"Regret analysis of an online majorized semi-proximal ADMM for online composite optimization","authors":"Zehao Xiao, Liwei Zhang","doi":"10.1007/s10898-024-01365-5","DOIUrl":null,"url":null,"abstract":"<p>An online majorized semi-proximal alternating direction method of multiplier (Online-mspADMM) is proposed for a broad class of online linearly constrained composite optimization problems. A majorized technique is adopted to produce subproblems which can be easily solved. Under mild assumptions, we establish <span>\\(\\mathcal {O}(\\sqrt{N})\\)</span> objective regret and <span>\\(\\mathcal {O}(\\sqrt{N})\\)</span> constraint violation regret at round <i>N</i>. We apply the Online-mspADMM to solve different types of online regularized logistic regression problems. The numerical results on synthetic data sets verify the theoretical result about regrets.</p>","PeriodicalId":15961,"journal":{"name":"Journal of Global Optimization","volume":"68 1","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2024-02-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Global Optimization","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10898-024-01365-5","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0
Abstract
An online majorized semi-proximal alternating direction method of multiplier (Online-mspADMM) is proposed for a broad class of online linearly constrained composite optimization problems. A majorized technique is adopted to produce subproblems which can be easily solved. Under mild assumptions, we establish \(\mathcal {O}(\sqrt{N})\) objective regret and \(\mathcal {O}(\sqrt{N})\) constraint violation regret at round N. We apply the Online-mspADMM to solve different types of online regularized logistic regression problems. The numerical results on synthetic data sets verify the theoretical result about regrets.
期刊介绍:
The Journal of Global Optimization publishes carefully refereed papers that encompass theoretical, computational, and applied aspects of global optimization. While the focus is on original research contributions dealing with the search for global optima of non-convex, multi-extremal problems, the journal’s scope covers optimization in the widest sense, including nonlinear, mixed integer, combinatorial, stochastic, robust, multi-objective optimization, computational geometry, and equilibrium problems. Relevant works on data-driven methods and optimization-based data mining are of special interest.
In addition to papers covering theory and algorithms of global optimization, the journal publishes significant papers on numerical experiments, new testbeds, and applications in engineering, management, and the sciences. Applications of particular interest include healthcare, computational biochemistry, energy systems, telecommunications, and finance. Apart from full-length articles, the journal features short communications on both open and solved global optimization problems. It also offers reviews of relevant books and publishes special issues.