The Loewner–Kufarev energy and foliations by Weil–Petersson quasicircles

IF 1.5 1区 数学 Q1 MATHEMATICS
Fredrik Viklund, Yilin Wang
{"title":"The Loewner–Kufarev energy and foliations by Weil–Petersson quasicircles","authors":"Fredrik Viklund, Yilin Wang","doi":"10.1112/plms.12582","DOIUrl":null,"url":null,"abstract":"We study foliations by chord–arc Jordan curves of the twice punctured Riemann sphere <mjx-container aria-label=\"double struck upper C minus StartSet 0 EndSet\" ctxtmenu_counter=\"0\" ctxtmenu_oldtabindex=\"1\" jax=\"CHTML\" role=\"application\" sre-explorer- style=\"font-size: 103%; position: relative;\" tabindex=\"0\"><mjx-math aria-hidden=\"true\"><mjx-semantics><mjx-mrow data-semantic-children=\"0,5\" data-semantic-content=\"1\" data-semantic- data-semantic-role=\"subtraction\" data-semantic-speech=\"double struck upper C minus StartSet 0 EndSet\" data-semantic-type=\"infixop\"><mjx-mi data-semantic-font=\"double-struck\" data-semantic- data-semantic-parent=\"6\" data-semantic-role=\"numbersetletter\" data-semantic-type=\"identifier\"><mjx-c></mjx-c></mjx-mi><mjx-mo data-semantic- data-semantic-operator=\"infixop,∖\" data-semantic-parent=\"6\" data-semantic-role=\"subtraction\" data-semantic-type=\"operator\" rspace=\"4\" space=\"4\"><mjx-c></mjx-c></mjx-mo><mjx-mrow data-semantic-children=\"3\" data-semantic-content=\"2,4\" data-semantic- data-semantic-parent=\"6\" data-semantic-role=\"set singleton\" data-semantic-type=\"fenced\"><mjx-mo data-semantic- data-semantic-operator=\"fenced\" data-semantic-parent=\"5\" data-semantic-role=\"open\" data-semantic-type=\"fence\" style=\"margin-left: 0.056em; margin-right: 0.056em;\"><mjx-c></mjx-c></mjx-mo><mjx-mn data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"5\" data-semantic-role=\"integer\" data-semantic-type=\"number\"><mjx-c></mjx-c></mjx-mn><mjx-mo data-semantic- data-semantic-operator=\"fenced\" data-semantic-parent=\"5\" data-semantic-role=\"close\" data-semantic-type=\"fence\" style=\"margin-left: 0.056em; margin-right: 0.056em;\"><mjx-c></mjx-c></mjx-mo></mjx-mrow></mjx-mrow></mjx-semantics></mjx-math><mjx-assistive-mml aria-hidden=\"true\" display=\"inline\" unselectable=\"on\"><math altimg=\"/cms/asset/18b294c8-16a0-4c92-85bd-1f96c88b00a8/plms12582-math-0001.png\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><semantics><mrow data-semantic-=\"\" data-semantic-children=\"0,5\" data-semantic-content=\"1\" data-semantic-role=\"subtraction\" data-semantic-speech=\"double struck upper C minus StartSet 0 EndSet\" data-semantic-type=\"infixop\"><mi data-semantic-=\"\" data-semantic-font=\"double-struck\" data-semantic-parent=\"6\" data-semantic-role=\"numbersetletter\" data-semantic-type=\"identifier\" mathvariant=\"double-struck\">C</mi><mo data-semantic-=\"\" data-semantic-operator=\"infixop,∖\" data-semantic-parent=\"6\" data-semantic-role=\"subtraction\" data-semantic-type=\"operator\">∖</mo><mrow data-semantic-=\"\" data-semantic-children=\"3\" data-semantic-content=\"2,4\" data-semantic-parent=\"6\" data-semantic-role=\"set singleton\" data-semantic-type=\"fenced\"><mo data-semantic-=\"\" data-semantic-operator=\"fenced\" data-semantic-parent=\"5\" data-semantic-role=\"open\" data-semantic-type=\"fence\" stretchy=\"false\">{</mo><mn data-semantic-=\"\" data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic-parent=\"5\" data-semantic-role=\"integer\" data-semantic-type=\"number\">0</mn><mo data-semantic-=\"\" data-semantic-operator=\"fenced\" data-semantic-parent=\"5\" data-semantic-role=\"close\" data-semantic-type=\"fence\" stretchy=\"false\">}</mo></mrow></mrow>$\\mathbb {C} \\setminus \\lbrace 0\\rbrace$</annotation></semantics></math></mjx-assistive-mml></mjx-container> using the Loewner–Kufarev equation. We associate to such a foliation a function on the plane that describes the “local winding” along each leaf. Our main theorem is that this function has finite Dirichlet energy if and only if the Loewner driving measure <mjx-container aria-label=\"rho\" ctxtmenu_counter=\"1\" ctxtmenu_oldtabindex=\"1\" jax=\"CHTML\" role=\"application\" sre-explorer- style=\"font-size: 103%; position: relative;\" tabindex=\"0\"><mjx-math aria-hidden=\"true\"><mjx-semantics><mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic- data-semantic-role=\"greekletter\" data-semantic-speech=\"rho\" data-semantic-type=\"identifier\"><mjx-c></mjx-c></mjx-mi></mjx-semantics></mjx-math><mjx-assistive-mml aria-hidden=\"true\" display=\"inline\" unselectable=\"on\"><math altimg=\"/cms/asset/bb24b5d9-08f0-438c-998d-3ddf73cde132/plms12582-math-0002.png\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><semantics><mi data-semantic-=\"\" data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic-role=\"greekletter\" data-semantic-speech=\"rho\" data-semantic-type=\"identifier\">ρ</mi>$\\rho$</annotation></semantics></math></mjx-assistive-mml></mjx-container> has finite Loewner–Kufarev energy, defined by","PeriodicalId":49667,"journal":{"name":"Proceedings of the London Mathematical Society","volume":"55 1","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2024-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the London Mathematical Society","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1112/plms.12582","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

We study foliations by chord–arc Jordan curves of the twice punctured Riemann sphere using the Loewner–Kufarev equation. We associate to such a foliation a function on the plane that describes the “local winding” along each leaf. Our main theorem is that this function has finite Dirichlet energy if and only if the Loewner driving measure has finite Loewner–Kufarev energy, defined by
卢瓦纳-库法里夫能量和魏尔-彼得森准圆的叶状结构
我们通过两次穿刺黎曼球 C∖{0}$\mathbb{C}的弦弧乔丹曲线来研究叶形。\setminus \lbrace 0\rbrace$ 使用卢瓦纳-库法列夫方程。我们将平面上的一个函数与这样的叶片关联起来,这个函数描述了沿每个叶片的 "局部卷绕"。我们的主要定理是,当且仅当洛厄纳驱动度量 ρ$\rho$ 具有有限的洛厄纳-库法列弗能量时,这个函数才具有有限的迪里夏特能量,其定义为
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.90
自引率
0.00%
发文量
82
审稿时长
6-12 weeks
期刊介绍: The Proceedings of the London Mathematical Society is the flagship journal of the LMS. It publishes articles of the highest quality and significance across a broad range of mathematics. There are no page length restrictions for submitted papers. The Proceedings has its own Editorial Board separate from that of the Journal, Bulletin and Transactions of the LMS.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信