{"title":"Stochastic Gauss–Seidel type inertial proximal alternating linearized minimization and its application to proximal neural networks","authors":"","doi":"10.1007/s00186-024-00851-6","DOIUrl":null,"url":null,"abstract":"<h3>Abstract</h3> <p>In many optimization problems arising from machine learning, image processing, and statistics communities, the objective functions possess a special form involving huge amounts of data, which encourages the application of stochastic algorithms. In this paper, we study such a broad class of nonconvex nonsmooth minimization problems, whose objective function is the sum of a smooth function of the entire variables and two nonsmooth functions of each variable. We propose to solve this problem with a stochastic Gauss–Seidel type inertial proximal alternating linearized minimization (denoted by SGiPALM) algorithm. We prove that under Kurdyka–Łojasiewicz (KŁ) property and some mild conditions, each bounded sequence generated by SGiPALM with the variance-reduced stochastic gradient estimator globally converges to a critical point after a finite number of iterations, or almost surely satisfies the finite length property. We also apply the SGiPALM algorithm to the proximal neural networks (PNN) with 4 layers for classification tasks on the MNIST dataset and compare it with other deterministic and stochastic optimization algorithms, the results illustrate the effectiveness of the proposed algorithm.</p>","PeriodicalId":49862,"journal":{"name":"Mathematical Methods of Operations Research","volume":"18 1","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2024-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical Methods of Operations Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00186-024-00851-6","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
In many optimization problems arising from machine learning, image processing, and statistics communities, the objective functions possess a special form involving huge amounts of data, which encourages the application of stochastic algorithms. In this paper, we study such a broad class of nonconvex nonsmooth minimization problems, whose objective function is the sum of a smooth function of the entire variables and two nonsmooth functions of each variable. We propose to solve this problem with a stochastic Gauss–Seidel type inertial proximal alternating linearized minimization (denoted by SGiPALM) algorithm. We prove that under Kurdyka–Łojasiewicz (KŁ) property and some mild conditions, each bounded sequence generated by SGiPALM with the variance-reduced stochastic gradient estimator globally converges to a critical point after a finite number of iterations, or almost surely satisfies the finite length property. We also apply the SGiPALM algorithm to the proximal neural networks (PNN) with 4 layers for classification tasks on the MNIST dataset and compare it with other deterministic and stochastic optimization algorithms, the results illustrate the effectiveness of the proposed algorithm.
期刊介绍:
This peer reviewed journal publishes original and high-quality articles on important mathematical and computational aspects of operations research, in particular in the areas of continuous and discrete mathematical optimization, stochastics, and game theory. Theoretically oriented papers are supposed to include explicit motivations of assumptions and results, while application oriented papers need to contain substantial mathematical contributions. Suggestions for algorithms should be accompanied with numerical evidence for their superiority over state-of-the-art methods. Articles must be of interest for a large audience in operations research, written in clear and correct English, and typeset in LaTeX. A special section contains invited tutorial papers on advanced mathematical or computational aspects of operations research, aiming at making such methodologies accessible for a wider audience.
All papers are refereed. The emphasis is on originality, quality, and importance.