On Stationary Navier-Stokes Equations in the Upper-Half Plane

IF 1.2 4区 数学 Q2 MATHEMATICS, APPLIED
Adrian D. Calderon, Van Le, Tuoc Phan
{"title":"On Stationary Navier-Stokes Equations in the Upper-Half Plane","authors":"Adrian D. Calderon,&nbsp;Van Le,&nbsp;Tuoc Phan","doi":"10.1007/s10440-024-00636-3","DOIUrl":null,"url":null,"abstract":"<div><p>We study the incompressible stationary Navier-Stokes equations in the upper-half plane with homogeneous Dirichlet boundary condition and non-zero external forcing terms. Existence of weak solutions is proved under a suitable condition on the external forces. Weak-strong uniqueness criteria based on various growth conditions at the infinity of weak solutions are also given. This is done by employing an energy estimate and a Hardy’s inequality. Several estimates of stream functions are carried out and two density lemmas with suitable weights for the homogeneous Sobolev space on 2-dimensional space are proved.</p></div>","PeriodicalId":53132,"journal":{"name":"Acta Applicandae Mathematicae","volume":"189 1","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2024-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Applicandae Mathematicae","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10440-024-00636-3","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

We study the incompressible stationary Navier-Stokes equations in the upper-half plane with homogeneous Dirichlet boundary condition and non-zero external forcing terms. Existence of weak solutions is proved under a suitable condition on the external forces. Weak-strong uniqueness criteria based on various growth conditions at the infinity of weak solutions are also given. This is done by employing an energy estimate and a Hardy’s inequality. Several estimates of stream functions are carried out and two density lemmas with suitable weights for the homogeneous Sobolev space on 2-dimensional space are proved.

关于上半平面的静态纳维-斯托克斯方程
我们研究了上半平面不可压缩的静态 Navier-Stokes 方程,该方程具有同质 Dirichlet 边界条件和非零外力作用项。在适当的外力条件下,证明了弱解的存在性。此外,还给出了基于弱解无穷大处各种增长条件的弱-强唯一性准则。这是通过使用能量估计和哈代不等式实现的。对流函数进行了若干估计,并证明了 2 维空间上同质 Sobolev 空间的两个具有适当权重的密度定理。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Acta Applicandae Mathematicae
Acta Applicandae Mathematicae 数学-应用数学
CiteScore
2.80
自引率
6.20%
发文量
77
审稿时长
16.2 months
期刊介绍: Acta Applicandae Mathematicae is devoted to the art and techniques of applying mathematics and the development of new, applicable mathematical methods. Covering a large spectrum from modeling to qualitative analysis and computational methods, Acta Applicandae Mathematicae contains papers on different aspects of the relationship between theory and applications, ranging from descriptive papers on actual applications meeting contemporary mathematical standards to proofs of new and deep theorems in applied mathematics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信