Rationality Problem of Two-Dimensional Quasi-Monomial Group Actions

Pub Date : 2024-02-12 DOI:10.1007/s00031-023-09832-1
Akinari Hoshi, Hidetaka Kitayama
{"title":"Rationality Problem of Two-Dimensional Quasi-Monomial Group Actions","authors":"Akinari Hoshi, Hidetaka Kitayama","doi":"10.1007/s00031-023-09832-1","DOIUrl":null,"url":null,"abstract":"<p>The rationality problem of two-dimensional purely quasi-monomial actions was solved completely by (Hoshi, Kang and Kitayama, J. Algebra <b>403</b>, 363-400, 2014). As a generalization, we solve the rationality problem of two-dimensional quasi-monomial actions under the condition that the actions are defined within the base field. In order to prove the theorem, we give a brief review of the Severi-Brauer variety with some examples and rationality results. We also use a rationality criterion for conic bundles of <span>\\(\\mathbb {P}^1\\)</span> over non-closed fields.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-02-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00031-023-09832-1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The rationality problem of two-dimensional purely quasi-monomial actions was solved completely by (Hoshi, Kang and Kitayama, J. Algebra 403, 363-400, 2014). As a generalization, we solve the rationality problem of two-dimensional quasi-monomial actions under the condition that the actions are defined within the base field. In order to prove the theorem, we give a brief review of the Severi-Brauer variety with some examples and rationality results. We also use a rationality criterion for conic bundles of \(\mathbb {P}^1\) over non-closed fields.

分享
查看原文
二维准自治群体行动的合理性问题
Hoshi, Kang and Kitayama, J. Algebra 403, 363-400, 2014)完全解决了二维纯粹准单数行动的合理性问题。作为推广,我们解决了二维准单子行动的合理性问题,条件是行动定义在基域内。为了证明该定理,我们简要回顾了 Severi-Brauer 变体,并列举了一些例子和合理性结果。我们还使用了非封闭域上\(\mathbb {P}^1\) 的圆锥束的合理性准则。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信