The Structure of Aisles and Co-aisles of t-Structures and Co-t-structures

IF 0.6 4区 数学 Q3 MATHEMATICS
Aran Tattar
{"title":"The Structure of Aisles and Co-aisles of t-Structures and Co-t-structures","authors":"Aran Tattar","doi":"10.1007/s10485-023-09755-8","DOIUrl":null,"url":null,"abstract":"<div><p>Right triangulated categories can be thought of as triangulated categories whose shift functor is not an equivalence. We give intrinsic characterisations of when such categories are appearing as the (co-)aisle of a (co-)t-structure in an associated triangulated category. Along the way, we also give an interpretation of these structures in the language of extriangulated categories.</p></div>","PeriodicalId":7952,"journal":{"name":"Applied Categorical Structures","volume":null,"pages":null},"PeriodicalIF":0.6000,"publicationDate":"2024-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10485-023-09755-8.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Categorical Structures","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10485-023-09755-8","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Right triangulated categories can be thought of as triangulated categories whose shift functor is not an equivalence. We give intrinsic characterisations of when such categories are appearing as the (co-)aisle of a (co-)t-structure in an associated triangulated category. Along the way, we also give an interpretation of these structures in the language of extriangulated categories.

Abstract Image

t 型结构和共 t 型结构的走道和共走道结构
右三角范畴可以看作是其移位函子不是等价的三角范畴。我们给出了这类范畴作为相关三角范畴中(共)t 结构的(共)过道出现时的内在特征。同时,我们还给出了这些结构在外缠范畴语言中的解释。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.30
自引率
16.70%
发文量
29
审稿时长
>12 weeks
期刊介绍: Applied Categorical Structures focuses on applications of results, techniques and ideas from category theory to mathematics, physics and computer science. These include the study of topological and algebraic categories, representation theory, algebraic geometry, homological and homotopical algebra, derived and triangulated categories, categorification of (geometric) invariants, categorical investigations in mathematical physics, higher category theory and applications, categorical investigations in functional analysis, in continuous order theory and in theoretical computer science. In addition, the journal also follows the development of emerging fields in which the application of categorical methods proves to be relevant. Applied Categorical Structures publishes both carefully refereed research papers and survey papers. It promotes communication and increases the dissemination of new results and ideas among mathematicians and computer scientists who use categorical methods in their research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信