Rates of convergence in the strong law of large numbers for weighted averages of nonidentically distributed random variables

Pub Date : 2024-02-16 DOI:10.1007/s10986-024-09621-7
{"title":"Rates of convergence in the strong law of large numbers for weighted averages of nonidentically distributed random variables","authors":"","doi":"10.1007/s10986-024-09621-7","DOIUrl":null,"url":null,"abstract":"<h3>Abstract</h3> <p>Integral tests are found for the convergence of two Spitzer-type series associated with a class of weighted averages introduced by Jajte [On the strong law of large numbers, <em>Ann. Probab.</em>, 31(1):409–412, 2003]. Our main theorems are valid for a large family of dependent random variables that are not necessarily identically distributed. As a byproduct, we improve the Marcinkiewicz–Zygmund strong law of large numbers for asymptotically almost negatively associated sequences due to Chandra and Ghosal [Extensions of the strong law of large numbers of Marcinkiewicz and Zygmund for dependent variables <em>Acta Math. Hung.</em>, 71(4):327–336, 1996]. We also complement two limit theorems recently derived by Anh et al. [TheMarcinkiewicz–Zygmund-type strong law of large numbers with general normalizing sequences, <em>J. Theor. Probab.</em>, 34(1):331–348, 2021] and Thành [On a new concept of stochastic domination and the laws of large numbers, <em>Test</em>, 32(1):74–106, 2023]. The obtained results are new even when the summands are independent.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-02-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10986-024-09621-7","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Integral tests are found for the convergence of two Spitzer-type series associated with a class of weighted averages introduced by Jajte [On the strong law of large numbers, Ann. Probab., 31(1):409–412, 2003]. Our main theorems are valid for a large family of dependent random variables that are not necessarily identically distributed. As a byproduct, we improve the Marcinkiewicz–Zygmund strong law of large numbers for asymptotically almost negatively associated sequences due to Chandra and Ghosal [Extensions of the strong law of large numbers of Marcinkiewicz and Zygmund for dependent variables Acta Math. Hung., 71(4):327–336, 1996]. We also complement two limit theorems recently derived by Anh et al. [TheMarcinkiewicz–Zygmund-type strong law of large numbers with general normalizing sequences, J. Theor. Probab., 34(1):331–348, 2021] and Thành [On a new concept of stochastic domination and the laws of large numbers, Test, 32(1):74–106, 2023]. The obtained results are new even when the summands are independent.

分享
查看原文
非同分布随机变量加权平均数的强大数定律收敛速率
摘要 对与 Jajte [《论强大数定律》,Ann. Probab.,31(1):409-412, 2003] 引入的一类加权平均数相关的两个 Spitzer 型数列的收敛性进行了积分检验。我们的主要定理适用于不一定是同分布的一大系列因变量。作为副产品,我们改进了 Chandra 和 Ghosal [Extensions of the strong law of large numbers of Marcinkiewicz and Zygmund for dependent variables Acta Math.71(4):327-336, 1996].我们还补充了 Anh 等人最近推导的两个极限定理 [TheMarcinkiewicz-Zygmund-type strong law of large numbers with general normalizing sequences, J. Theor.Probab., 34(1):331-348, 2021] 和 Thành [On a new concept of stochastic domination and the laws of large numbers, Test, 32(1):74-106, 2023]。即使求和是独立的,所得到的结果也是新的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信