Closure under infinitely divisible distribution roots and the Embrechts–Goldie conjecture

Pub Date : 2024-02-17 DOI:10.1007/s10986-024-09620-8
Hui Xu, Changjun Yu, Yuebao Wang, Dongya Cheng
{"title":"Closure under infinitely divisible distribution roots and the Embrechts–Goldie conjecture","authors":"Hui Xu, Changjun Yu, Yuebao Wang, Dongya Cheng","doi":"10.1007/s10986-024-09620-8","DOIUrl":null,"url":null,"abstract":"<p>We show that the distribution class ℒ(γ) \\ 𝒪𝒮 is not closed under infinitely divisible distribution roots for γ &gt; 0, that is, we provide some infinitely divisible distributions belonging to the class, whereas the corresponding Lévy distributions do not. In fact, one part of these Lévy distributions belonging to the class 𝒪ℒ\\ℒ(γ) have different properties, and the other parts even do not belong to the class 𝒪ℒ. Therefore, combining with the existing related results, we give a completely negative conclusion for the subject and Embrechts–Goldie conjecture. Then we discuss some interesting issues related to the results of this paper.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-02-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10986-024-09620-8","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We show that the distribution class ℒ(γ) \ 𝒪𝒮 is not closed under infinitely divisible distribution roots for γ > 0, that is, we provide some infinitely divisible distributions belonging to the class, whereas the corresponding Lévy distributions do not. In fact, one part of these Lévy distributions belonging to the class 𝒪ℒ\ℒ(γ) have different properties, and the other parts even do not belong to the class 𝒪ℒ. Therefore, combining with the existing related results, we give a completely negative conclusion for the subject and Embrechts–Goldie conjecture. Then we discuss some interesting issues related to the results of this paper.

分享
查看原文
无限可分分布根下的闭合与恩布里奇-戈尔迪猜想
我们证明了分布类ℒ(γ) \𝒪𝒮在γ >0的无限可分分布根下并不封闭,也就是说,我们提供了一些属于该类的无限可分分布,而相应的莱维分布却不属于该类。事实上,这些属于𝒪ℒ\ℒ(γ)类的Lévy分布的一部分具有不同的性质,另一部分甚至不属于𝒪ℒ类。因此,结合已有的相关结果,我们给出了完全否定该主题和恩布里奇-戈尔迪猜想的结论。然后,我们讨论与本文结果相关的一些有趣问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信