Lattice Path Bicircular Matroids

Pub Date : 2024-02-07 DOI:10.1007/s00373-023-02749-2
{"title":"Lattice Path Bicircular Matroids","authors":"","doi":"10.1007/s00373-023-02749-2","DOIUrl":null,"url":null,"abstract":"<h3>Abstract</h3> <p>Lattice path matroids and bicircular matroids are two well-known classes of transversal matroids. In the seminal work of Bonin and de Mier about structural properties of lattice path matroids, the authors claimed that lattice path matroids significantly differ from bicircular matroids. Recently, it was proved that all cosimple lattice path matroids have positive double circuits, while it was shown that there is a large class of cosimple bicircular matroids with no positive double circuits. These observations support Bonin and de Miers’ claim. Finally, Sivaraman and Slilaty suggested studying the intersection of lattice path matroids and bicircular matroids as a possibly interesting research topic. In this work, we exhibit the excluded bicircular matroids for the class of lattice path matroids, and we propose a characterization of the graph family whose bicircular matroids are lattice path matroids. As an application of this characterization, we propose a geometric description of 2-connected lattice path bicircular matroids.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00373-023-02749-2","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Lattice path matroids and bicircular matroids are two well-known classes of transversal matroids. In the seminal work of Bonin and de Mier about structural properties of lattice path matroids, the authors claimed that lattice path matroids significantly differ from bicircular matroids. Recently, it was proved that all cosimple lattice path matroids have positive double circuits, while it was shown that there is a large class of cosimple bicircular matroids with no positive double circuits. These observations support Bonin and de Miers’ claim. Finally, Sivaraman and Slilaty suggested studying the intersection of lattice path matroids and bicircular matroids as a possibly interesting research topic. In this work, we exhibit the excluded bicircular matroids for the class of lattice path matroids, and we propose a characterization of the graph family whose bicircular matroids are lattice path matroids. As an application of this characterization, we propose a geometric description of 2-connected lattice path bicircular matroids.

分享
查看原文
格子路径双圆 Matroids
摘要 格状路径矩阵和双圆矩阵是两类著名的横向矩阵。在博宁和德米尔关于格状路径矩阵结构性质的开创性工作中,作者声称格状路径矩阵与双圆矩阵有显著不同。最近的研究证明,所有复简单格状路径矩阵都有正双回路,而有一大类复简单双圆矩阵没有正双回路。这些观察结果支持了博宁和德米尔斯的说法。最后,Sivaraman 和 Slilaty 建议把研究格子路径矩阵和双圆矩阵的交集作为一个可能有趣的研究课题。在这项工作中,我们展示了格子路径矩阵类的排除双圆矩阵,并提出了双圆矩阵为格子路径矩阵的图族的特征。作为对这一特征的应用,我们提出了对 2 连接网格路径双圆矩阵的几何描述。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信