{"title":"Reduced Order Modeling Inversion of Monostatic Data in a Multi-scattering Environment","authors":"Vladimir Druskin, Shari Moskow, Mikhail Zaslavsky","doi":"10.1137/23m1564365","DOIUrl":null,"url":null,"abstract":"SIAM Journal on Imaging Sciences, Volume 17, Issue 1, Page 334-350, March 2024. <br/>Abstract.Data-driven reduced order models (ROMs) have recently emerged as an efficient tool for the solution of inverse scattering problems with applications to seismic and sonar imaging. One requirement of this approach is that it uses the full square multiple-input/multiple-output (MIMO) matrix-valued transfer function as the data for multidimensional problems. The synthetic aperture radar (SAR), however, is limited to the single-input/single-output (SISO) measurements corresponding to the diagonal of the matrix transfer function. Here we present a ROM-based Lippmann–Schwinger approach overcoming this drawback. The ROMs are constructed to match the data for each source-receiver pair separately, and these are used to construct internal solutions for the corresponding source using only the data-driven Gramian. Efficiency of the proposed approach is demonstrated on 2D and 2.5D (3D propagation and 2D reflectors) numerical examples. The new algorithm not only suppresses multiple echoes seen in the Born imaging but also takes advantage of their illumination of some back sides of the reflectors, improving the quality of their mapping.","PeriodicalId":49528,"journal":{"name":"SIAM Journal on Imaging Sciences","volume":"170 1","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2024-02-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"SIAM Journal on Imaging Sciences","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1137/23m1564365","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
SIAM Journal on Imaging Sciences, Volume 17, Issue 1, Page 334-350, March 2024. Abstract.Data-driven reduced order models (ROMs) have recently emerged as an efficient tool for the solution of inverse scattering problems with applications to seismic and sonar imaging. One requirement of this approach is that it uses the full square multiple-input/multiple-output (MIMO) matrix-valued transfer function as the data for multidimensional problems. The synthetic aperture radar (SAR), however, is limited to the single-input/single-output (SISO) measurements corresponding to the diagonal of the matrix transfer function. Here we present a ROM-based Lippmann–Schwinger approach overcoming this drawback. The ROMs are constructed to match the data for each source-receiver pair separately, and these are used to construct internal solutions for the corresponding source using only the data-driven Gramian. Efficiency of the proposed approach is demonstrated on 2D and 2.5D (3D propagation and 2D reflectors) numerical examples. The new algorithm not only suppresses multiple echoes seen in the Born imaging but also takes advantage of their illumination of some back sides of the reflectors, improving the quality of their mapping.
期刊介绍:
SIAM Journal on Imaging Sciences (SIIMS) covers all areas of imaging sciences, broadly interpreted. It includes image formation, image processing, image analysis, image interpretation and understanding, imaging-related machine learning, and inverse problems in imaging; leading to applications to diverse areas in science, medicine, engineering, and other fields. The journal’s scope is meant to be broad enough to include areas now organized under the terms image processing, image analysis, computer graphics, computer vision, visual machine learning, and visualization. Formal approaches, at the level of mathematics and/or computations, as well as state-of-the-art practical results, are expected from manuscripts published in SIIMS. SIIMS is mathematically and computationally based, and offers a unique forum to highlight the commonality of methodology, models, and algorithms among diverse application areas of imaging sciences. SIIMS provides a broad authoritative source for fundamental results in imaging sciences, with a unique combination of mathematics and applications.
SIIMS covers a broad range of areas, including but not limited to image formation, image processing, image analysis, computer graphics, computer vision, visualization, image understanding, pattern analysis, machine intelligence, remote sensing, geoscience, signal processing, medical and biomedical imaging, and seismic imaging. The fundamental mathematical theories addressing imaging problems covered by SIIMS include, but are not limited to, harmonic analysis, partial differential equations, differential geometry, numerical analysis, information theory, learning, optimization, statistics, and probability. Research papers that innovate both in the fundamentals and in the applications are especially welcome. SIIMS focuses on conceptually new ideas, methods, and fundamentals as applied to all aspects of imaging sciences.