GEMAct: a Python package for non-life (re)insurance modeling

IF 1.5 Q3 BUSINESS, FINANCE
Gabriele Pittarello, Edoardo Luini, Manfred Marvin Marchione
{"title":"GEMAct: a Python package for non-life (re)insurance modeling","authors":"Gabriele Pittarello, Edoardo Luini, Manfred Marvin Marchione","doi":"10.1017/s1748499524000022","DOIUrl":null,"url":null,"abstract":"This paper introduces gemact, a Python package for actuarial modeling based on the collective risk model. The library supports applications to risk costing and risk transfer, loss aggregation, and loss reserving. We add new probability distributions to those available in scipy, including the (a, b, 0) and (a, b, 1) discrete distributions, copulas of the Archimedean family, the Gaussian, the Student t and the Fundamental copulas. We provide an implementation of the AEP algorithm for calculating the cumulative distribution function of the sum of dependent, nonnegative random variables, given their dependency structure specified with a copula. The theoretical framework is introduced at the beginning of each section to give the reader with a sufficient understanding of the underlying actuarial models.","PeriodicalId":44135,"journal":{"name":"Annals of Actuarial Science","volume":null,"pages":null},"PeriodicalIF":1.5000,"publicationDate":"2024-02-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of Actuarial Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1017/s1748499524000022","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BUSINESS, FINANCE","Score":null,"Total":0}
引用次数: 0

Abstract

This paper introduces gemact, a Python package for actuarial modeling based on the collective risk model. The library supports applications to risk costing and risk transfer, loss aggregation, and loss reserving. We add new probability distributions to those available in scipy, including the (a, b, 0) and (a, b, 1) discrete distributions, copulas of the Archimedean family, the Gaussian, the Student t and the Fundamental copulas. We provide an implementation of the AEP algorithm for calculating the cumulative distribution function of the sum of dependent, nonnegative random variables, given their dependency structure specified with a copula. The theoretical framework is introduced at the beginning of each section to give the reader with a sufficient understanding of the underlying actuarial models.
GEMAct:用于非寿险(再)保险建模的 Python 软件包
本文介绍了基于集体风险模型的精算建模 Python 软件包 gemact。该库支持风险成本计算和风险转移、损失汇总和损失准备金的应用。我们在 scipy 中可用的概率分布基础上添加了新的概率分布,包括(a, b, 0)和(a, b, 1)离散分布、阿基米德族协方差、高斯协方差、Student t 协方差和基本协方差。我们提供了一种 AEP 算法的实现方法,用于计算非负随机变量依存和的累积分布函数,给定它们的依存结构用 copula 指定。每节开头都介绍了理论框架,以便读者充分了解基本精算模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.10
自引率
5.90%
发文量
22
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信