Antonio Corbo Esposito, Luisa Faella, Gianpaolo Piscitelli, Vincenzo Mottola, Ravi Prakash, Antonello Tamburrino
{"title":"The [math]-Laplace “Signature” for Quasilinear Inverse Problems","authors":"Antonio Corbo Esposito, Luisa Faella, Gianpaolo Piscitelli, Vincenzo Mottola, Ravi Prakash, Antonello Tamburrino","doi":"10.1137/22m1527192","DOIUrl":null,"url":null,"abstract":"SIAM Journal on Imaging Sciences, Volume 17, Issue 1, Page 351-388, March 2024. <br/> Abstract. This paper refers to an imaging problem in the presence of nonlinear materials. Specifically, the problem we address falls within the framework of Electrical Resistance Tomography and involves two different materials, one or both of which are nonlinear. Tomography with nonlinear materials is in the early stages of development, although breakthroughs are expected in the not-too-distant future. The original contribution this work makes is that the nonlinear problem can be approximated by a weighted [math]-Laplace problem. From the perspective of tomography, this is a significant result because it highlights the central role played by the [math]-Laplacian in inverse problems with nonlinear materials. Moreover, when [math], this result allows all the imaging methods and algorithms developed for linear materials to be brought into the arena of problems with nonlinear materials. The main result of this work is that for “small” Dirichlet data, (i) one material can be replaced by a perfect electric conductor and (ii) the other material can be replaced by a material giving rise to a weighted [math]-Laplace problem.","PeriodicalId":49528,"journal":{"name":"SIAM Journal on Imaging Sciences","volume":"11 1","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2024-02-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"SIAM Journal on Imaging Sciences","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1137/22m1527192","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
SIAM Journal on Imaging Sciences, Volume 17, Issue 1, Page 351-388, March 2024. Abstract. This paper refers to an imaging problem in the presence of nonlinear materials. Specifically, the problem we address falls within the framework of Electrical Resistance Tomography and involves two different materials, one or both of which are nonlinear. Tomography with nonlinear materials is in the early stages of development, although breakthroughs are expected in the not-too-distant future. The original contribution this work makes is that the nonlinear problem can be approximated by a weighted [math]-Laplace problem. From the perspective of tomography, this is a significant result because it highlights the central role played by the [math]-Laplacian in inverse problems with nonlinear materials. Moreover, when [math], this result allows all the imaging methods and algorithms developed for linear materials to be brought into the arena of problems with nonlinear materials. The main result of this work is that for “small” Dirichlet data, (i) one material can be replaced by a perfect electric conductor and (ii) the other material can be replaced by a material giving rise to a weighted [math]-Laplace problem.
期刊介绍:
SIAM Journal on Imaging Sciences (SIIMS) covers all areas of imaging sciences, broadly interpreted. It includes image formation, image processing, image analysis, image interpretation and understanding, imaging-related machine learning, and inverse problems in imaging; leading to applications to diverse areas in science, medicine, engineering, and other fields. The journal’s scope is meant to be broad enough to include areas now organized under the terms image processing, image analysis, computer graphics, computer vision, visual machine learning, and visualization. Formal approaches, at the level of mathematics and/or computations, as well as state-of-the-art practical results, are expected from manuscripts published in SIIMS. SIIMS is mathematically and computationally based, and offers a unique forum to highlight the commonality of methodology, models, and algorithms among diverse application areas of imaging sciences. SIIMS provides a broad authoritative source for fundamental results in imaging sciences, with a unique combination of mathematics and applications.
SIIMS covers a broad range of areas, including but not limited to image formation, image processing, image analysis, computer graphics, computer vision, visualization, image understanding, pattern analysis, machine intelligence, remote sensing, geoscience, signal processing, medical and biomedical imaging, and seismic imaging. The fundamental mathematical theories addressing imaging problems covered by SIIMS include, but are not limited to, harmonic analysis, partial differential equations, differential geometry, numerical analysis, information theory, learning, optimization, statistics, and probability. Research papers that innovate both in the fundamentals and in the applications are especially welcome. SIIMS focuses on conceptually new ideas, methods, and fundamentals as applied to all aspects of imaging sciences.