Existence of a weak solution and blow-up of strong solutions for a two-component Fornberg–Whitham system

IF 1.1 3区 数学 Q1 MATHEMATICS
Zhihao Bai, Yang Wang, Long Wei
{"title":"Existence of a weak solution and blow-up of strong solutions for a two-component Fornberg–Whitham system","authors":"Zhihao Bai, Yang Wang, Long Wei","doi":"10.1007/s00028-023-00941-8","DOIUrl":null,"url":null,"abstract":"<p>In this paper, we investigate the existence of a weak solution and blow-up of strong solutions to a two-component Fornberg–Whitham system. Due to the absence of some useful conservation laws, we establish the existence of a weak solution to the system in lower order Sobolev spaces <span>\\(H^{s}\\times H^{s-1}\\)</span> (<span>\\(s\\in (1,3/2]\\)</span>) via a modified pseudo-parabolic regularization method. And then, a blow-up scenario for strong solutions to this system is shown. By the analysis of Riccati-type inequalities recently, we present some sufficient conditions on the initial data that lead to the blow-up for corresponding strong solutions to the system.</p>","PeriodicalId":51083,"journal":{"name":"Journal of Evolution Equations","volume":null,"pages":null},"PeriodicalIF":1.1000,"publicationDate":"2024-02-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Evolution Equations","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00028-023-00941-8","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we investigate the existence of a weak solution and blow-up of strong solutions to a two-component Fornberg–Whitham system. Due to the absence of some useful conservation laws, we establish the existence of a weak solution to the system in lower order Sobolev spaces \(H^{s}\times H^{s-1}\) (\(s\in (1,3/2]\)) via a modified pseudo-parabolic regularization method. And then, a blow-up scenario for strong solutions to this system is shown. By the analysis of Riccati-type inequalities recently, we present some sufficient conditions on the initial data that lead to the blow-up for corresponding strong solutions to the system.

双分量福恩贝格-惠瑟姆系统弱解的存在和强解的膨胀
在本文中,我们研究了双成分 Fornberg-Whitham 系统弱解的存在和强解的膨胀。由于缺乏一些有用的守恒定律,我们通过一种改进的伪抛物正则化方法,在低阶索波列夫空间 \(H^{s}\times H^{s-1}\) (\(s\in (1,3/2]\))中建立了该系统弱解的存在性。然后,展示了该系统强解的炸毁情形。通过最近对 Riccati-type 不等式的分析,我们提出了一些导致该系统相应强解炸毁的初始数据的充分条件。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.30
自引率
7.10%
发文量
90
审稿时长
>12 weeks
期刊介绍: The Journal of Evolution Equations (JEE) publishes high-quality, peer-reviewed papers on equations dealing with time dependent systems and ranging from abstract theory to concrete applications. Research articles should contain new and important results. Survey articles on recent developments are also considered as important contributions to the field. Particular topics covered by the journal are: Linear and Nonlinear Semigroups Parabolic and Hyperbolic Partial Differential Equations Reaction Diffusion Equations Deterministic and Stochastic Control Systems Transport and Population Equations Volterra Equations Delay Equations Stochastic Processes and Dirichlet Forms Maximal Regularity and Functional Calculi Asymptotics and Qualitative Theory of Linear and Nonlinear Evolution Equations Evolution Equations in Mathematical Physics Elliptic Operators
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信