A Generalized Translation Operator Generated by the Sinc Function on an Interval

Pub Date : 2024-02-12 DOI:10.1134/s0081543823060032
V. V. Arestov, M. V. Deikalova
{"title":"A Generalized Translation Operator Generated by the Sinc Function on an Interval","authors":"V. V. Arestov, M. V. Deikalova","doi":"10.1134/s0081543823060032","DOIUrl":null,"url":null,"abstract":"<p>We discuss the properties of the generalized translation operator generated by the system of functions <span>\\(\\mathfrak{S}=\\{{(\\sin k\\pi x)}/{(k\\pi x)}\\}_{k=1}^{\\infty}\\)</span> in the spaces <span>\\(L^{q}=L^{q}((0,1),{\\upsilon})\\)</span>, <span>\\(q\\geq 1\\)</span>, on the interval <span>\\((0,1)\\)</span> with the weight <span>\\(\\upsilon(x)=x^{2}\\)</span>. We find an integral representation of this operator and study its norm in the spaces <span>\\(L^{q}\\)</span>, <span>\\(1\\leq q\\leq\\infty\\)</span>. The translation operator is applied to the study of Nikol’skii’s inequality between the uniform norm and the <span>\\(L^{q}\\)</span>-norm of polynomials in the system <span>\\(\\mathfrak{S}\\)</span>.\n</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-02-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1134/s0081543823060032","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We discuss the properties of the generalized translation operator generated by the system of functions \(\mathfrak{S}=\{{(\sin k\pi x)}/{(k\pi x)}\}_{k=1}^{\infty}\) in the spaces \(L^{q}=L^{q}((0,1),{\upsilon})\), \(q\geq 1\), on the interval \((0,1)\) with the weight \(\upsilon(x)=x^{2}\). We find an integral representation of this operator and study its norm in the spaces \(L^{q}\), \(1\leq q\leq\infty\). The translation operator is applied to the study of Nikol’skii’s inequality between the uniform norm and the \(L^{q}\)-norm of polynomials in the system \(\mathfrak{S}\).

分享
查看原文
由区间上的 Sinc 函数生成的广义平移算子
我们讨论了在空间 \(L^{q}=L^{q}((0. 1,{\upsilon})\(q\geq 1\) 上,由权重为 \(\upsilon}) 的函数体系 \(\mathfrak{S}=\{(\sin k\pi x)}/{(k\pi x)}\}_{k=1}^{\infty}) 生成的广义平移算子的性质、1),{\upsilon})/), \(q\geq 1\), on the interval \((0,1)/) with the weight \(\upsilon(x)=x^{2}/)。我们找到了这个算子的积分表示,并研究了它在(L^{q}\)、(1\leq q\leq\infty\)空间中的规范。我们将平移算子应用于研究尼克尔斯基(Nikol'skii)在系统 \(\mathfrak{S}\)中多项式的统一规范和 \(L^{q}\)规范之间的不等式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信