On Intersections of Nilpotent Subgroups in Finite Groups with Simple Socle from the “Atlas of Finite Groups”

Pub Date : 2024-02-12 DOI:10.1134/s0081543823060251
V. I. Zenkov
{"title":"On Intersections of Nilpotent Subgroups in Finite Groups with Simple Socle from the “Atlas of Finite Groups”","authors":"V. I. Zenkov","doi":"10.1134/s0081543823060251","DOIUrl":null,"url":null,"abstract":"<p>Earlier, the author described up to conjugacy all pairs <span>\\((A,B)\\)</span> of nilpotent subgroups of a finite group <span>\\(G\\)</span> with socle <span>\\(L_{2}(q)\\)</span> for which <span>\\(A\\cap B^{g}\\neq 1\\)</span> for any element of <span>\\(G\\)</span>. A similar description was obtained by the author later for primary subgroups <span>\\(A\\)</span> and <span>\\(B\\)</span> of a finite group <span>\\(G\\)</span> with socle <span>\\(L_{n}(2^{m})\\)</span>. In this paper, we describe up to conjugacy all pairs <span>\\((A,B)\\)</span> of nilpotent subgroups of a finite group <span>\\(G\\)</span> with simple socle from the “Atlas of Finite Groups” for which <span>\\(A\\cap B^{g}\\neq 1\\)</span> for any element <span>\\(g\\)</span> of <span>\\(G\\)</span>. The results obtained in the considered cases confirm the hypothesis (Problem 15.40 from the “Kourovka Notebook”) that a finite simple nonabelian group <span>\\(G\\)</span> for any nilpotent subgroups <span>\\(N\\)</span> contains an element <span>\\(g\\)</span> such that <span>\\(N\\cap N^{g}=1\\)</span>.\n</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-02-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1134/s0081543823060251","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Earlier, the author described up to conjugacy all pairs \((A,B)\) of nilpotent subgroups of a finite group \(G\) with socle \(L_{2}(q)\) for which \(A\cap B^{g}\neq 1\) for any element of \(G\). A similar description was obtained by the author later for primary subgroups \(A\) and \(B\) of a finite group \(G\) with socle \(L_{n}(2^{m})\). In this paper, we describe up to conjugacy all pairs \((A,B)\) of nilpotent subgroups of a finite group \(G\) with simple socle from the “Atlas of Finite Groups” for which \(A\cap B^{g}\neq 1\) for any element \(g\) of \(G\). The results obtained in the considered cases confirm the hypothesis (Problem 15.40 from the “Kourovka Notebook”) that a finite simple nonabelian group \(G\) for any nilpotent subgroups \(N\) contains an element \(g\) such that \(N\cap N^{g}=1\).

分享
查看原文
从 "有限群图集 "看有限群中的无穷子群与简单群的交集
早些时候,作者描述了有限群 \(G\) 的所有零potent 子群对((A,B))的共轭关系,对于有限群 \(G\) 的任何元素,共轭关系都是\(A\cap B^{g}\neq 1\) 。对于有限群 \(G\)的初级子群 \(A\)和 \(B\),作者后来也得到了类似的描述,这个有限群的群顶是\(L_{n}(2^{m})\)。在本文中,我们描述了 "有限群图集 "中有限群 \(G\) 的所有对((A,B)\)零potent 子群,这些子群具有简单的社会群,对于 \(G\) 的任何元素 \(g\) 来说,\(A\cap B^{g}\neq 1\) 都是共轭的。在所考虑的情况下得到的结果证实了这样一个假设("库洛夫卡笔记本 "中的问题 15.40),即对于任意零能子群 \(N\) 的有限简单非阿贝尔群 \(G\) 包含一个元素 \(g\) ,使得 \(N\cap N^{g}=1\).
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信