Simulating the propagation of boundary-layer disturbances by solving boundary-value and initial-value problems

IF 0.5 4区 数学 Q4 MATHEMATICS, APPLIED
Grigory V. Zasko, Andrey V. Boiko, Kirill V. Demyanko, Yuri M. Nechepurenko
{"title":"Simulating the propagation of boundary-layer disturbances by solving boundary-value and initial-value problems","authors":"Grigory V. Zasko, Andrey V. Boiko, Kirill V. Demyanko, Yuri M. Nechepurenko","doi":"10.1515/rnam-2024-0005","DOIUrl":null,"url":null,"abstract":"The article deals with the downstream propagation of small–amplitude disturbances of viscous incompressible laminar boundary layers, using the linearized equations for disturbance amplitudes. Two different methods are proposed. The first one solves a two-dimensional boundary-value problem, using a buffer-domain technique to mimic the outflow boundary condition. The second one solves a streamwise initial-value problem, using a spectral parabolization at each integration step. Both methods show good performance in simulating the propagation of the Tollmien–Schlichting waves and the Görtler vortices and can be applied to compute the spatial optimal disturbances.","PeriodicalId":49585,"journal":{"name":"Russian Journal of Numerical Analysis and Mathematical Modelling","volume":"9 1","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2024-02-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Russian Journal of Numerical Analysis and Mathematical Modelling","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/rnam-2024-0005","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

The article deals with the downstream propagation of small–amplitude disturbances of viscous incompressible laminar boundary layers, using the linearized equations for disturbance amplitudes. Two different methods are proposed. The first one solves a two-dimensional boundary-value problem, using a buffer-domain technique to mimic the outflow boundary condition. The second one solves a streamwise initial-value problem, using a spectral parabolization at each integration step. Both methods show good performance in simulating the propagation of the Tollmien–Schlichting waves and the Görtler vortices and can be applied to compute the spatial optimal disturbances.
通过求解边界值和初值问题模拟边界层扰动的传播
文章利用扰动振幅线性化方程,讨论了粘性不可压缩层流边界层小振幅扰动的下游传播问题。文章提出了两种不同的方法。第一种方法利用缓冲域技术模拟流出边界条件,求解二维边界值问题。第二种方法求解流向初值问题,在每个积分步使用频谱解析。这两种方法在模拟 Tollmien-Schlichting 波和 Görtler 涡的传播方面都显示出良好的性能,并可用于计算空间最佳扰动。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.40
自引率
16.70%
发文量
31
审稿时长
>12 weeks
期刊介绍: The Russian Journal of Numerical Analysis and Mathematical Modelling, published bimonthly, provides English translations of selected new original Russian papers on the theoretical aspects of numerical analysis and the application of mathematical methods to simulation and modelling. The editorial board, consisting of the most prominent Russian scientists in numerical analysis and mathematical modelling, selects papers on the basis of their high scientific standard, innovative approach and topical interest. Topics: -numerical analysis- numerical linear algebra- finite element methods for PDEs- iterative methods- Monte-Carlo methods- mathematical modelling and numerical simulation in geophysical hydrodynamics, immunology and medicine, fluid mechanics and electrodynamics, geosciences.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信