Docking, DFT, and structural study of N-((1,5-dimethyl-3-oxo-2-phenyl-2,3-dihydro-1H-pyrazol-4-yl)carbamothioyl)benzamide

IF 2.1 4区 化学 Q3 CHEMISTRY, MULTIDISCIPLINARY
Khalaf A. Jasim, Nazk Mohammed Aziz, Muhammad Ashfaq, Reza Behjatmanesh-Ardakani, Ahmed S. Faihan, Muhammad Nawaz Tahir, Ahmed S. Al-Janabi, Necmi Dege, Andre J. Gesquiere
{"title":"Docking, DFT, and structural study of N-((1,5-dimethyl-3-oxo-2-phenyl-2,3-dihydro-1H-pyrazol-4-yl)carbamothioyl)benzamide","authors":"Khalaf A. Jasim,&nbsp;Nazk Mohammed Aziz,&nbsp;Muhammad Ashfaq,&nbsp;Reza Behjatmanesh-Ardakani,&nbsp;Ahmed S. Faihan,&nbsp;Muhammad Nawaz Tahir,&nbsp;Ahmed S. Al-Janabi,&nbsp;Necmi Dege,&nbsp;Andre J. Gesquiere","doi":"10.1007/s11224-024-02278-5","DOIUrl":null,"url":null,"abstract":"<div><p>In the current work, we report the synthesis and characterization of N-((1,5-dimethyl-3-oxo-2-phenyl-2,3-dihydro-1H-pyrazol-4-yl)carbamothioyl)benzamide by reacting 4-aminoantipyrine and benzoylisothiocynate in equimolar ratio. Moreover, the compound was characterized by single crystal XRD analysis. The various intermolecular interactions stabilized the supramolecular assembly, including H-bonding and interaction involving π-ring. Hirshfeld surface analysis was performed in order to probe intermolecular interactions in detail. Interaction energy calculations were conducted to find the type of interaction energy prominent in stabilizing supramolecular assembly. The quantum parameters of the prepared compound were investigated by utilizing the Def2-SVPD basis set in conjunction with the hybrid method of B3LYP. The results revealed quite similarities between the experimental and theoretical calculations. In addition, the HOMO orbitals are located at the hetero atoms, while the LUMO orbitals are located at the benzene ring. In addition, the prepared compound was docked with Ampicillin-CTX-M-15. The results showed good binding interaction between the ligand and the targeted amino acids, with the best binding score of − 5.26 kcal/mol.</p></div>","PeriodicalId":780,"journal":{"name":"Structural Chemistry","volume":null,"pages":null},"PeriodicalIF":2.1000,"publicationDate":"2024-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s11224-024-02278-5.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Structural Chemistry","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1007/s11224-024-02278-5","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

In the current work, we report the synthesis and characterization of N-((1,5-dimethyl-3-oxo-2-phenyl-2,3-dihydro-1H-pyrazol-4-yl)carbamothioyl)benzamide by reacting 4-aminoantipyrine and benzoylisothiocynate in equimolar ratio. Moreover, the compound was characterized by single crystal XRD analysis. The various intermolecular interactions stabilized the supramolecular assembly, including H-bonding and interaction involving π-ring. Hirshfeld surface analysis was performed in order to probe intermolecular interactions in detail. Interaction energy calculations were conducted to find the type of interaction energy prominent in stabilizing supramolecular assembly. The quantum parameters of the prepared compound were investigated by utilizing the Def2-SVPD basis set in conjunction with the hybrid method of B3LYP. The results revealed quite similarities between the experimental and theoretical calculations. In addition, the HOMO orbitals are located at the hetero atoms, while the LUMO orbitals are located at the benzene ring. In addition, the prepared compound was docked with Ampicillin-CTX-M-15. The results showed good binding interaction between the ligand and the targeted amino acids, with the best binding score of − 5.26 kcal/mol.

Abstract Image

N-((1,5-二甲基-3-氧代-2-苯基-2,3-二氢-1H-吡唑-4-基)氨基硫酰基)苯甲酰胺的对接、DFT 和结构研究
在本次研究中,我们报告了通过将 4-氨基安替比林和苯甲酰异硫代乙炔酸盐以等摩尔比进行反应,合成了 N-((1,5-二甲基-3-氧代-2-苯基-2,3-二氢-1H-吡唑-4-基)氨基硫酰基)苯甲酰胺,并对其进行了表征。此外,该化合物还通过单晶 XRD 分析进行了表征。各种分子间相互作用稳定了超分子组装,包括 H 键和涉及 π 环的相互作用。为了详细探究分子间的相互作用,我们进行了 Hirshfeld 表面分析。此外,还进行了相互作用能计算,以找出在稳定超分子组装方面具有突出作用的相互作用能类型。利用 Def2-SVPD 基集和 B3LYP 混合方法研究了所制备化合物的量子参数。结果表明,实验计算和理论计算的结果非常相似。此外,HOMO 轨道位于杂原子上,而 LUMO 轨道位于苯环上。此外,制备的化合物还与氨苄西林-CTX-M-15 进行了对接。结果表明,配体与目标氨基酸之间存在良好的结合相互作用,最佳结合得分为 - 5.26 kcal/mol。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Structural Chemistry
Structural Chemistry 化学-化学综合
CiteScore
3.80
自引率
11.80%
发文量
227
审稿时长
3.7 months
期刊介绍: Structural Chemistry is an international forum for the publication of peer-reviewed original research papers that cover the condensed and gaseous states of matter and involve numerous techniques for the determination of structure and energetics, their results, and the conclusions derived from these studies. The journal overcomes the unnatural separation in the current literature among the areas of structure determination, energetics, and applications, as well as builds a bridge to other chemical disciplines. Ist comprehensive coverage encompasses broad discussion of results, observation of relationships among various properties, and the description and application of structure and energy information in all domains of chemistry. We welcome the broadest range of accounts of research in structural chemistry involving the discussion of methodologies and structures,experimental, theoretical, and computational, and their combinations. We encourage discussions of structural information collected for their chemicaland biological significance.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信