Dynamic sloshing in a rectangular vessel with porous baffles

IF 1.4 4区 工程技术 Q2 ENGINEERING, MULTIDISCIPLINARY
M. R. Turner
{"title":"Dynamic sloshing in a rectangular vessel with porous baffles","authors":"M. R. Turner","doi":"10.1007/s10665-024-10333-7","DOIUrl":null,"url":null,"abstract":"<p>The damping efficiency of vertical porous baffles is investigated for a dynamically coupled fluid-vessel system. The system comprises of a two-dimensional vessel, with a rectangular cross-section, partially filled with fluid, undergoing rectilinear motions with porous baffles obstructing the fluid motion. The baffles pierce the surface of the fluid, thus the problem can be considered as separate fluid filled regions of the vessel, connected by infinitely thin porous baffles, at which transmission conditions based on Darcy’s law are applied. The fluid is assumed to be inviscid, incompressible and irrotational such that the flow in each region is governed by a velocity potential. The application of Darcy’s law at the baffles is significant as it makes the system non-conservative, and thus the resulting characteristic equation for the normal modes leads to damped modes coupled to the moving vessel. Numerical evaluations of the characteristic equation show that the lowest frequency mode typically has the smallest decay rate, and hence will persist longest in an experimental setup. The maximum decay rate of the lowest frequency mode occurs when the baffles split the vessel into identically sized regions.</p>","PeriodicalId":50204,"journal":{"name":"Journal of Engineering Mathematics","volume":"254 1","pages":""},"PeriodicalIF":1.4000,"publicationDate":"2024-02-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Engineering Mathematics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s10665-024-10333-7","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The damping efficiency of vertical porous baffles is investigated for a dynamically coupled fluid-vessel system. The system comprises of a two-dimensional vessel, with a rectangular cross-section, partially filled with fluid, undergoing rectilinear motions with porous baffles obstructing the fluid motion. The baffles pierce the surface of the fluid, thus the problem can be considered as separate fluid filled regions of the vessel, connected by infinitely thin porous baffles, at which transmission conditions based on Darcy’s law are applied. The fluid is assumed to be inviscid, incompressible and irrotational such that the flow in each region is governed by a velocity potential. The application of Darcy’s law at the baffles is significant as it makes the system non-conservative, and thus the resulting characteristic equation for the normal modes leads to damped modes coupled to the moving vessel. Numerical evaluations of the characteristic equation show that the lowest frequency mode typically has the smallest decay rate, and hence will persist longest in an experimental setup. The maximum decay rate of the lowest frequency mode occurs when the baffles split the vessel into identically sized regions.

Abstract Image

带有多孔挡板的矩形容器中的动态荡流
研究了垂直多孔障板对动态耦合流体-容器系统的阻尼效率。该系统由一个二维容器组成,容器横截面为矩形,部分充满流体,流体做直线运动,多孔障板阻碍流体运动。挡板穿透流体表面,因此可以将问题视为容器中充满流体的独立区域,由无限薄的多孔挡板连接,在这些区域应用基于达西定律的传输条件。假设流体是不粘性、不可压缩和不可旋转的,因此每个区域的流动都受速度势能的支配。在障板处应用达西定律的意义重大,因为它使系统变得不守恒,因此法向模态的特征方程导致与移动容器耦合的阻尼模态。特征方程的数值评估表明,最低频率模式的衰减率通常最小,因此在实验装置中的持续时间最长。当挡板将容器分割成大小相同的区域时,最低频率模式的衰减率最大。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Engineering Mathematics
Journal of Engineering Mathematics 工程技术-工程:综合
CiteScore
2.10
自引率
7.70%
发文量
44
审稿时长
6 months
期刊介绍: The aim of this journal is to promote the application of mathematics to problems from engineering and the applied sciences. It also aims to emphasize the intrinsic unity, through mathematics, of the fundamental problems of applied and engineering science. The scope of the journal includes the following: • Mathematics: Ordinary and partial differential equations, Integral equations, Asymptotics, Variational and functional−analytic methods, Numerical analysis, Computational methods. • Applied Fields: Continuum mechanics, Stability theory, Wave propagation, Diffusion, Heat and mass transfer, Free−boundary problems; Fluid mechanics: Aero− and hydrodynamics, Boundary layers, Shock waves, Fluid machinery, Fluid−structure interactions, Convection, Combustion, Acoustics, Multi−phase flows, Transition and turbulence, Creeping flow, Rheology, Porous−media flows, Ocean engineering, Atmospheric engineering, Non-Newtonian flows, Ship hydrodynamics; Solid mechanics: Elasticity, Classical mechanics, Nonlinear mechanics, Vibrations, Plates and shells, Fracture mechanics; Biomedical engineering, Geophysical engineering, Reaction−diffusion problems; and related areas. The Journal also publishes occasional invited ''Perspectives'' articles by distinguished researchers reviewing and bringing their authoritative overview to recent developments in topics of current interest in their area of expertise. Authors wishing to suggest topics for such articles should contact the Editors-in-Chief directly. Prospective authors are encouraged to consult recent issues of the journal in order to judge whether or not their manuscript is consistent with the style and content of published papers.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信