Modeling dynamic spatiotemporal user preference for location prediction: a mutually enhanced method

Jiawei Cai, Dong Wang, Hongyang Chen, Chenxi Liu, Zhu Xiao
{"title":"Modeling dynamic spatiotemporal user preference for location prediction: a mutually enhanced method","authors":"Jiawei Cai, Dong Wang, Hongyang Chen, Chenxi Liu, Zhu Xiao","doi":"10.1007/s11280-024-01245-8","DOIUrl":null,"url":null,"abstract":"<p>As the cornerstone of location-based services, location prediction aims to predict user’s next location through modeling user’s personal preference or travel sequential pattern. However, most existing methods only consider one of them and extremely sparse data makes it difficult to dynamically and comprehensively characterize user preference. In this paper, we propose a novel <b>D</b>ynamic <b>S</b>patiotemporal <b>U</b>ser <b>P</b>reference (DSUP) model to characterize dynamic spatiotemporal user preference and integrate it with user’s travel sequential pattern for location prediction. Specifically, we design an interaction-aware graph attention network to learn the embeddings of locations and timeslots, and infer dynamic spatiotemporal user preference from the history travel locations and timeslots. Then, we combine user’s current travel preference with the impact of history travel sequential pattern to predict user’s next location. In addition, we predict user’s next travel timeslot and combine it with the temporal pattern of locations to enhance the location and timeslot prediction results mutually. We conduct extensive experiments on two public datasets Gowalla, Foursquare and our own Private Car dataset. The results on three datasets show that our method improves the accuracy and mean reciprocal rank of location prediction by 3%-11% and 7%-10% respectively.</p>","PeriodicalId":501180,"journal":{"name":"World Wide Web","volume":"37 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"World Wide Web","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s11280-024-01245-8","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

As the cornerstone of location-based services, location prediction aims to predict user’s next location through modeling user’s personal preference or travel sequential pattern. However, most existing methods only consider one of them and extremely sparse data makes it difficult to dynamically and comprehensively characterize user preference. In this paper, we propose a novel Dynamic Spatiotemporal User Preference (DSUP) model to characterize dynamic spatiotemporal user preference and integrate it with user’s travel sequential pattern for location prediction. Specifically, we design an interaction-aware graph attention network to learn the embeddings of locations and timeslots, and infer dynamic spatiotemporal user preference from the history travel locations and timeslots. Then, we combine user’s current travel preference with the impact of history travel sequential pattern to predict user’s next location. In addition, we predict user’s next travel timeslot and combine it with the temporal pattern of locations to enhance the location and timeslot prediction results mutually. We conduct extensive experiments on two public datasets Gowalla, Foursquare and our own Private Car dataset. The results on three datasets show that our method improves the accuracy and mean reciprocal rank of location prediction by 3%-11% and 7%-10% respectively.

Abstract Image

为位置预测建立动态时空用户偏好模型:一种相互增强的方法
作为基于位置服务的基石,位置预测旨在通过模拟用户的个人偏好或旅行顺序模式来预测用户的下一个位置。然而,现有的大多数方法只考虑了其中一种,而且数据极其稀少,很难动态、全面地描述用户偏好。在本文中,我们提出了一种新颖的动态时空用户偏好(DSUP)模型来描述动态时空用户偏好,并将其与用户的出行顺序模式相结合,用于位置预测。具体来说,我们设计了一个交互感知图注意网络来学习地点和时间段的嵌入,并从历史旅行地点和时间段推断用户的动态时空偏好。然后,我们将用户当前的旅行偏好与历史旅行顺序模式的影响相结合,预测用户的下一个地点。此外,我们还预测用户的下一个旅行时段,并将其与地点的时间模式相结合,从而相互增强地点和时段的预测结果。我们在两个公共数据集 Gowalla、Foursquare 和我们自己的私家车数据集上进行了广泛的实验。三个数据集的结果表明,我们的方法将位置预测的准确率和平均倒数等级分别提高了 3%-11% 和 7%-10%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信