Alice Cortinovis, Daniel Kressner, Yuji Nakatsukasa
{"title":"Speeding Up Krylov Subspace Methods for Computing [math] via Randomization","authors":"Alice Cortinovis, Daniel Kressner, Yuji Nakatsukasa","doi":"10.1137/22m1543458","DOIUrl":null,"url":null,"abstract":"SIAM Journal on Matrix Analysis and Applications, Volume 45, Issue 1, Page 619-633, March 2024. <br/> Abstract. This work is concerned with the computation of the action of a matrix function f(A), such as the matrix exponential or the matrix square root, on a vector b. For a general matrix A, this can be done by computing the compression of A onto a suitable Krylov subspace. Such compression is usually computed by forming an orthonormal basis of the Krylov subspace using the Arnoldi method. In this work, we propose to compute (nonorthonormal) bases in a faster way and to use a fast randomized algorithm for least-squares problems to compute the compression of A onto the Krylov subspace. We present some numerical examples which show that our algorithms can be faster than the standard Arnoldi method while achieving comparable accuracy.","PeriodicalId":49538,"journal":{"name":"SIAM Journal on Matrix Analysis and Applications","volume":"17 1","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2024-02-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"SIAM Journal on Matrix Analysis and Applications","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1137/22m1543458","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
SIAM Journal on Matrix Analysis and Applications, Volume 45, Issue 1, Page 619-633, March 2024. Abstract. This work is concerned with the computation of the action of a matrix function f(A), such as the matrix exponential or the matrix square root, on a vector b. For a general matrix A, this can be done by computing the compression of A onto a suitable Krylov subspace. Such compression is usually computed by forming an orthonormal basis of the Krylov subspace using the Arnoldi method. In this work, we propose to compute (nonorthonormal) bases in a faster way and to use a fast randomized algorithm for least-squares problems to compute the compression of A onto the Krylov subspace. We present some numerical examples which show that our algorithms can be faster than the standard Arnoldi method while achieving comparable accuracy.
期刊介绍:
The SIAM Journal on Matrix Analysis and Applications contains research articles in matrix analysis and its applications and papers of interest to the numerical linear algebra community. Applications include such areas as signal processing, systems and control theory, statistics, Markov chains, and mathematical biology. Also contains papers that are of a theoretical nature but have a possible impact on applications.