{"title":"Alternating and Parallel Proximal Gradient Methods for Nonsmooth, Nonconvex Minimax: A Unified Convergence Analysis","authors":"Eyal Cohen, Marc Teboulle","doi":"10.1287/moor.2022.0294","DOIUrl":null,"url":null,"abstract":"There is growing interest in nonconvex minimax problems that is driven by an abundance of applications. Our focus is on nonsmooth, nonconvex-strongly concave minimax, thus departing from the more common weakly convex and smooth models assumed in the recent literature. We present proximal gradient schemes with either parallel or alternating steps. We show that both methods can be analyzed through a single scheme within a unified analysis that relies on expanding a general convergence mechanism used for analyzing nonconvex, nonsmooth optimization problems. In contrast to the current literature, which focuses on the complexity of obtaining nearly approximate stationary solutions, we prove subsequence convergence to a critical point of the primal objective and global convergence when the latter is semialgebraic. Furthermore, the complexity results we provide are with respect to approximate stationary solutions. Lastly, we expand the scope of problems that can be addressed by generalizing one of the steps with a Bregman proximal gradient update, and together with a few adjustments to the analysis, this allows us to extend the convergence and complexity results to this broader setting.Funding: The research of E. Cohen was partially supported by a doctoral fellowship from the Israel Science Foundation [Grant 2619-20] and Deutsche Forschungsgemeinschaft [Grant 800240]. The research of M. Teboulle was partially supported by the Israel Science Foundation [Grant 2619-20] and Deutsche Forschungsgemeinschaft [Grant 800240].","PeriodicalId":49852,"journal":{"name":"Mathematics of Operations Research","volume":"2 1","pages":""},"PeriodicalIF":1.4000,"publicationDate":"2024-02-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematics of Operations Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1287/moor.2022.0294","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
There is growing interest in nonconvex minimax problems that is driven by an abundance of applications. Our focus is on nonsmooth, nonconvex-strongly concave minimax, thus departing from the more common weakly convex and smooth models assumed in the recent literature. We present proximal gradient schemes with either parallel or alternating steps. We show that both methods can be analyzed through a single scheme within a unified analysis that relies on expanding a general convergence mechanism used for analyzing nonconvex, nonsmooth optimization problems. In contrast to the current literature, which focuses on the complexity of obtaining nearly approximate stationary solutions, we prove subsequence convergence to a critical point of the primal objective and global convergence when the latter is semialgebraic. Furthermore, the complexity results we provide are with respect to approximate stationary solutions. Lastly, we expand the scope of problems that can be addressed by generalizing one of the steps with a Bregman proximal gradient update, and together with a few adjustments to the analysis, this allows us to extend the convergence and complexity results to this broader setting.Funding: The research of E. Cohen was partially supported by a doctoral fellowship from the Israel Science Foundation [Grant 2619-20] and Deutsche Forschungsgemeinschaft [Grant 800240]. The research of M. Teboulle was partially supported by the Israel Science Foundation [Grant 2619-20] and Deutsche Forschungsgemeinschaft [Grant 800240].
期刊介绍:
Mathematics of Operations Research is an international journal of the Institute for Operations Research and the Management Sciences (INFORMS). The journal invites articles concerned with the mathematical and computational foundations in the areas of continuous, discrete, and stochastic optimization; mathematical programming; dynamic programming; stochastic processes; stochastic models; simulation methodology; control and adaptation; networks; game theory; and decision theory. Also sought are contributions to learning theory and machine learning that have special relevance to decision making, operations research, and management science. The emphasis is on originality, quality, and importance; correctness alone is not sufficient. Significant developments in operations research and management science not having substantial mathematical interest should be directed to other journals such as Management Science or Operations Research.