M. Ganesh Karthik, U. Sivaji, M. Manohar, D. Jayaram, M. Venu Gopalachari, Ramesh Vatambeti
{"title":"An Intrusion Detection Model Based on Hybridization of S-ROA in Deep Learning Model for MANET","authors":"M. Ganesh Karthik, U. Sivaji, M. Manohar, D. Jayaram, M. Venu Gopalachari, Ramesh Vatambeti","doi":"10.1007/s40998-024-00700-6","DOIUrl":null,"url":null,"abstract":"<p>A kind of wireless network called a “mobile ad hoc network” (MANET) can transfer data without the aid of any infrastructure. Due to its short battery life, limited bandwidth, reliance on intermediaries or other nodes, distributed architecture, and self-organisation, the MANET node is vulnerable to many security-related attacks. The Internet of Things (IoT), a more modern networking pattern that can be seen as a superset of the paradigms discussed above, has recently come into existence. It is extremely difficult to secure these networks due to their scattered design and the few resources they have. A key function of intrusion detection systems (IDS) is the identification of hostile actions that impair network performance. It is extremely important that an IDS be able to adapt to such difficulties. As a result, the research creates a deep learning-based feature extraction to increase the machine learning technique's classification accuracy. The suggested model uses outstanding network-constructed feature extraction (RNBFE), which pulls structures from a deep residual network's many convolutional layers. Additionally, RNBFE's numerous parameters cause a lot of configuration issues because they require manual parameter adjustment. Therefore, the integration of the Rider Optimization Algorithm (ROA) and the Spotted Hyena Optimizer (SHO) to frame the new algorithm, Spotted Hyena-based Rider Optimization (S-ROA), is used to adjust the RNBFE’s settings. Attack classification is performed on the resulting feature vectors using fuzzy neural classifiers (FNC). The experimental analysis uses two datasets that are publicly accessible.</p>","PeriodicalId":49064,"journal":{"name":"Iranian Journal of Science and Technology-Transactions of Electrical Engineering","volume":null,"pages":null},"PeriodicalIF":1.5000,"publicationDate":"2024-02-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Iranian Journal of Science and Technology-Transactions of Electrical Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s40998-024-00700-6","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
A kind of wireless network called a “mobile ad hoc network” (MANET) can transfer data without the aid of any infrastructure. Due to its short battery life, limited bandwidth, reliance on intermediaries or other nodes, distributed architecture, and self-organisation, the MANET node is vulnerable to many security-related attacks. The Internet of Things (IoT), a more modern networking pattern that can be seen as a superset of the paradigms discussed above, has recently come into existence. It is extremely difficult to secure these networks due to their scattered design and the few resources they have. A key function of intrusion detection systems (IDS) is the identification of hostile actions that impair network performance. It is extremely important that an IDS be able to adapt to such difficulties. As a result, the research creates a deep learning-based feature extraction to increase the machine learning technique's classification accuracy. The suggested model uses outstanding network-constructed feature extraction (RNBFE), which pulls structures from a deep residual network's many convolutional layers. Additionally, RNBFE's numerous parameters cause a lot of configuration issues because they require manual parameter adjustment. Therefore, the integration of the Rider Optimization Algorithm (ROA) and the Spotted Hyena Optimizer (SHO) to frame the new algorithm, Spotted Hyena-based Rider Optimization (S-ROA), is used to adjust the RNBFE’s settings. Attack classification is performed on the resulting feature vectors using fuzzy neural classifiers (FNC). The experimental analysis uses two datasets that are publicly accessible.
期刊介绍:
Transactions of Electrical Engineering is to foster the growth of scientific research in all branches of electrical engineering and its related grounds and to provide a medium by means of which the fruits of these researches may be brought to the attentionof the world’s scientific communities.
The journal has the focus on the frontier topics in the theoretical, mathematical, numerical, experimental and scientific developments in electrical engineering as well
as applications of established techniques to new domains in various electical engineering disciplines such as:
Bio electric, Bio mechanics, Bio instrument, Microwaves, Wave Propagation, Communication Theory, Channel Estimation, radar & sonar system, Signal Processing, image processing, Artificial Neural Networks, Data Mining and Machine Learning, Fuzzy Logic and Systems, Fuzzy Control, Optimal & Robust ControlNavigation & Estimation Theory, Power Electronics & Drives, Power Generation & Management The editors will welcome papers from all professors and researchers from universities, research centers,
organizations, companies and industries from all over the world in the hope that this will advance the scientific standards of the journal and provide a channel of communication between Iranian Scholars and their colleague in other parts of the world.