Runoff Modeling Efficiency for the Upper Ussuri Basin Using Observational Data and the ERA5 Reanalysis

IF 1.4 4区 地球科学 Q4 METEOROLOGY & ATMOSPHERIC SCIENCES
A. N. Bugaets, S. Yu. Lupakov, L. V. Gonchukov, O. V. Sokolov, N. Yu. Sidorenko
{"title":"Runoff Modeling Efficiency for the Upper Ussuri Basin Using Observational Data and the ERA5 Reanalysis","authors":"A. N. Bugaets, S. Yu. Lupakov, L. V. Gonchukov, O. V. Sokolov, N. Yu. Sidorenko","doi":"10.3103/s1068373923120051","DOIUrl":null,"url":null,"abstract":"<h3 data-test=\"abstract-sub-heading\">Abstract</h3><p>Experience of using meteorological observations and the ERA5 reanalysis for runoff modeling using the GR4J conceptual model is outlined. The study objects are catchments within the Ussuri River basin (Kirovskii, the Russian Far East). The results of the comparison of ground-based observations and reanalysis data are presented. The hydrological model has been calibrated and verified on the basis of various data sources. The traditional scores NSE, logNSE, and BIAS have been used to evaluate the modeling efficiency. According to the scores, the modeling efficiency is generally \"satisfactory\" and better. It is shown that for simulations, it is better to use observation network data in case of floods and the reanalysis data in case of spring high water and low flow periods. It is concluded that the effective resolution of the ERA5 data for daily precipitation and air temperature for hydrological modeling in the study area is <span>\\(0.75^\\circ{-}1.0^\\circ\\)</span> (<span>\\(\\sim\\)</span>90–120 km).</p>","PeriodicalId":49581,"journal":{"name":"Russian Meteorology and Hydrology","volume":"11 1","pages":""},"PeriodicalIF":1.4000,"publicationDate":"2024-02-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Russian Meteorology and Hydrology","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.3103/s1068373923120051","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"METEOROLOGY & ATMOSPHERIC SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Experience of using meteorological observations and the ERA5 reanalysis for runoff modeling using the GR4J conceptual model is outlined. The study objects are catchments within the Ussuri River basin (Kirovskii, the Russian Far East). The results of the comparison of ground-based observations and reanalysis data are presented. The hydrological model has been calibrated and verified on the basis of various data sources. The traditional scores NSE, logNSE, and BIAS have been used to evaluate the modeling efficiency. According to the scores, the modeling efficiency is generally "satisfactory" and better. It is shown that for simulations, it is better to use observation network data in case of floods and the reanalysis data in case of spring high water and low flow periods. It is concluded that the effective resolution of the ERA5 data for daily precipitation and air temperature for hydrological modeling in the study area is \(0.75^\circ{-}1.0^\circ\) (\(\sim\)90–120 km).

Abstract Image

利用观测数据和ERA5再分析数据建立上乌苏里江流域径流模型的效率
摘要 概述了使用 GR4J 概念模型,利用气象观测和 ERA5 再分析进行径流建模的经验。研究对象是乌苏里江流域(基洛夫斯基,俄罗斯远东地区)的集水区。介绍了地面观测数据与再分析数据的比较结果。水文模型在各种数据源的基础上进行了校准和验证。采用传统的 NSE、logNSE 和 BIAS 分数来评估建模效率。根据这些评分,建模效率一般为 "满意 "或更好。结果表明,在模拟时,洪水期使用观测网数据更好,春季丰水期和枯水期使用再分析数据更好。结论是,ERA5 数据的有效分辨率为(0.75^\circ{-}1.0^\circ\)((\(\sim\)90-120 km)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Russian Meteorology and Hydrology
Russian Meteorology and Hydrology METEOROLOGY & ATMOSPHERIC SCIENCES-
CiteScore
1.70
自引率
28.60%
发文量
44
审稿时长
4-8 weeks
期刊介绍: Russian Meteorology and Hydrology is a peer reviewed journal that covers topical issues of hydrometeorological science and practice: methods of forecasting weather and hydrological phenomena, climate monitoring issues, environmental pollution, space hydrometeorology, agrometeorology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信