Discussing Semigroup Bounds with Resolvent Estimates

Pub Date : 2024-02-16 DOI:10.1007/s00020-024-02754-x
Bernard Helffer, Johannes Sjöstrand, Joe Viola
{"title":"Discussing Semigroup Bounds with Resolvent Estimates","authors":"Bernard Helffer, Johannes Sjöstrand, Joe Viola","doi":"10.1007/s00020-024-02754-x","DOIUrl":null,"url":null,"abstract":"<p>The purpose of this paper is to revisit the proof of the Gearhardt–Prüss–Huang–Greiner theorem for a semigroup <i>S</i>(<i>t</i>), following the general idea of the proofs that we have seen in the literature and to get an explicit estimate on the operator norm of <i>S</i>(<i>t</i>) in terms of bounds on the resolvent of the generator. In Helffer and Sjöstrand (From resolvent bounds to semigroup bounds. ArXiv:1001.4171v1, math. FA, 2010) by the first two authors, this was done and some applications in semiclassical analysis were given. Some of these results have been subsequently published in three books written by the two first authors Helffer (Spectral theory and its applications. Cambridge University Press, Cambridge, 2013) and Sjöstrand (Lecture notes : Spectral properties of non-self-adjoint operators. Journées équations aux dérivées partielles (2009), article no. 1), (Non self-adjoint differential operators, spectral asymptotics and random perturbations. Pseudo-differential Operators and Applications, Birkhäuser (2018)). A second work Helffer and Sjöstrand (Integral Equ Oper Theory 93(3), 2021) presents new improvements partially motivated by a paper of Wei (Sci China Math 64:507–518, 2021). In this third paper, we continue the discussion on whether the aforementioned results are optimal, and whether one can improve these results through iteration. Numerical computations will illustrate some of the abstract results.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-02-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00020-024-02754-x","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The purpose of this paper is to revisit the proof of the Gearhardt–Prüss–Huang–Greiner theorem for a semigroup S(t), following the general idea of the proofs that we have seen in the literature and to get an explicit estimate on the operator norm of S(t) in terms of bounds on the resolvent of the generator. In Helffer and Sjöstrand (From resolvent bounds to semigroup bounds. ArXiv:1001.4171v1, math. FA, 2010) by the first two authors, this was done and some applications in semiclassical analysis were given. Some of these results have been subsequently published in three books written by the two first authors Helffer (Spectral theory and its applications. Cambridge University Press, Cambridge, 2013) and Sjöstrand (Lecture notes : Spectral properties of non-self-adjoint operators. Journées équations aux dérivées partielles (2009), article no. 1), (Non self-adjoint differential operators, spectral asymptotics and random perturbations. Pseudo-differential Operators and Applications, Birkhäuser (2018)). A second work Helffer and Sjöstrand (Integral Equ Oper Theory 93(3), 2021) presents new improvements partially motivated by a paper of Wei (Sci China Math 64:507–518, 2021). In this third paper, we continue the discussion on whether the aforementioned results are optimal, and whether one can improve these results through iteration. Numerical computations will illustrate some of the abstract results.

Abstract Image

分享
查看原文
用残差估计讨论半群界限
本文的目的是按照我们在文献中看到的证明的一般思路,重温半群 S(t) 的 Gearhardt-Prüss-Huang-Greiner 定理的证明,并根据生成器的 resolvent 边界,对 S(t) 的算子规范进行明确估计。在 Helffer 和 Sjöstrand (From resolvent bounds to semigroup bounds.ArXiv:1001.4171v1, math.FA,2010)中,前两位作者完成了这一工作,并给出了在半经典分析中的一些应用。其中一些结果随后发表在两位第一作者海尔弗撰写的三本书中(《谱理论及其应用》,剑桥大学出版社,剑桥,2010 年)。剑桥大学出版社,剑桥,2013 年)和 Sjöstrand (Lecture notes :Spectral properties of non-self-adjoint operators.Journées équations aux dérivées partielles (2009), article no.1), (Non self-adjoint differential operators, spectral asymptotics and random perturbations.伪微分算子与应用》,Birkhäuser 出版社(2018 年))。第二篇论文 Helffer 和 Sjöstrand (Integral Equ Oper Theory 93(3), 2021)提出了新的改进,其部分动机来自 Wei 的一篇论文 (Sci China Math 64:507-518, 2021)。在第三篇论文中,我们将继续讨论上述结果是否最优,以及能否通过迭代改进这些结果。数值计算将说明一些抽象结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信