QoS-enhanced load balancing strategies for metaverse-infused VR/AR in engineering education 5.0

IF 2 3区 工程技术 Q3 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
Kiran Deep Singh, Prabh Deep Singh
{"title":"QoS-enhanced load balancing strategies for metaverse-infused VR/AR in engineering education 5.0","authors":"Kiran Deep Singh,&nbsp;Prabh Deep Singh","doi":"10.1002/cae.22722","DOIUrl":null,"url":null,"abstract":"<p>The evolution of augmented reality (AR) and virtual reality (VR) technologies has ushered in a new era of immersive experiences, with applications ranging from entertainment to education. The proposed framework introduces a fog layer with an innovative, improved geographic load-balancing algorithm. It optimizes load distribution and provides quality of service (QoS) parameters that are important for enhancing user experiences for AR/VR applications. The iFogSim toolkit experimentally validates the framework in electroencephalogram-based VR/AR gaming applications. Also, the proposed framework is tested in a diverse range of scenarios. Results show that the proposed algorithm improves QoS for AR/VR applications with noticeable improvements on average latency, jitter, and packet loss. Future research should aim to address these limitations for a more comprehensive understanding of the proposed framework's practicality and effectiveness. The development of immersive technologies will continue to expand in multiple sectors, and future research will focus on energy efficiency, security, and real-world applications.</p>","PeriodicalId":50643,"journal":{"name":"Computer Applications in Engineering Education","volume":"32 3","pages":""},"PeriodicalIF":2.0000,"publicationDate":"2024-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer Applications in Engineering Education","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/cae.22722","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

The evolution of augmented reality (AR) and virtual reality (VR) technologies has ushered in a new era of immersive experiences, with applications ranging from entertainment to education. The proposed framework introduces a fog layer with an innovative, improved geographic load-balancing algorithm. It optimizes load distribution and provides quality of service (QoS) parameters that are important for enhancing user experiences for AR/VR applications. The iFogSim toolkit experimentally validates the framework in electroencephalogram-based VR/AR gaming applications. Also, the proposed framework is tested in a diverse range of scenarios. Results show that the proposed algorithm improves QoS for AR/VR applications with noticeable improvements on average latency, jitter, and packet loss. Future research should aim to address these limitations for a more comprehensive understanding of the proposed framework's practicality and effectiveness. The development of immersive technologies will continue to expand in multiple sectors, and future research will focus on energy efficiency, security, and real-world applications.

工程教育 5.0 中的元宇宙注入式 VR/AR 的 QoS 增强型负载均衡策略
增强现实(AR)和虚拟现实(VR)技术的发展开创了沉浸式体验的新时代,其应用范围从娱乐到教育不一而足。所提出的框架引入了一个雾层,该雾层具有创新的、改进的地理负载平衡算法。它能优化负载分配,并提供对增强 AR/VR 应用的用户体验非常重要的服务质量(QoS)参数。iFogSim 工具包在基于脑电图的 VR/AR 游戏应用中对该框架进行了实验验证。此外,还在各种场景中测试了所提出的框架。结果表明,提出的算法改善了 AR/VR 应用的 QoS,在平均延迟、抖动和数据包丢失方面都有明显改善。未来的研究应着眼于解决这些局限性,以便更全面地了解拟议框架的实用性和有效性。身临其境技术的发展将在多个领域继续扩大,未来的研究将重点关注能效、安全性和实际应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Computer Applications in Engineering Education
Computer Applications in Engineering Education 工程技术-工程:综合
CiteScore
7.20
自引率
10.30%
发文量
100
审稿时长
6-12 weeks
期刊介绍: Computer Applications in Engineering Education provides a forum for publishing peer-reviewed timely information on the innovative uses of computers, Internet, and software tools in engineering education. Besides new courses and software tools, the CAE journal covers areas that support the integration of technology-based modules in the engineering curriculum and promotes discussion of the assessment and dissemination issues associated with these new implementation methods.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信