Chain algebras of finite distributive lattices

Pub Date : 2024-02-06 DOI:10.1007/s10801-023-01294-8
Oleksandra Gasanova, Lisa Nicklasson
{"title":"Chain algebras of finite distributive lattices","authors":"Oleksandra Gasanova, Lisa Nicklasson","doi":"10.1007/s10801-023-01294-8","DOIUrl":null,"url":null,"abstract":"<p>We introduce a family of toric algebras defined by maximal chains of a finite distributive lattice. Applying results on stable set polytopes, we conclude that every such algebra is normal and Cohen–Macaulay, and give an interpretation of its Krull dimension in terms of the combinatorics of the underlying lattice. When the lattice is planar, we show that the corresponding chain algebra is generated by a sortable set of monomials and is isomorphic to a Hibi ring of another finite distributive lattice. As a consequence, it has a defining toric ideal with a quadratic Gröbner basis, and its <i>h</i>-vector counts ascents in certain standard Young tableaux. If instead the lattice has dimension <span>\\(n&gt;2\\)</span>, we show that the defining ideal has minimal generators of degree at least <i>n</i>.\n</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10801-023-01294-8","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We introduce a family of toric algebras defined by maximal chains of a finite distributive lattice. Applying results on stable set polytopes, we conclude that every such algebra is normal and Cohen–Macaulay, and give an interpretation of its Krull dimension in terms of the combinatorics of the underlying lattice. When the lattice is planar, we show that the corresponding chain algebra is generated by a sortable set of monomials and is isomorphic to a Hibi ring of another finite distributive lattice. As a consequence, it has a defining toric ideal with a quadratic Gröbner basis, and its h-vector counts ascents in certain standard Young tableaux. If instead the lattice has dimension \(n>2\), we show that the defining ideal has minimal generators of degree at least n.

Abstract Image

分享
查看原文
有限分布网格的链代数
我们介绍了由有限分布网格的最大链定义的环状代数族。应用关于稳定集合多面体的结果,我们得出结论:每一个这样的代数都是正态的和科恩-麦考莱的,并根据底层网格的组合学给出了其克鲁尔维度的解释。当网格为平面时,我们证明相应的链代数由可排序的单项式集生成,并且与另一个有限分布网格的希比环同构。因此,它有一个具有二次格罗伯纳基的定义环理想,其 h 向量在某些标准杨表中计数上升。如果网格的维数是(n>2\),我们将证明定义理想至少有 n 级的最小生成器。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信