{"title":"Uncertainty Quantification of Vibroacoustics with Deep Neural Networks and Catmull–Clark Subdivision Surfaces","authors":"Zhongbin Zhou, Yunfei Gao, Yu Cheng, Yujing Ma, Xin Wen, Pengfei Sun, Peng Yu, Zhongming Hu","doi":"10.1155/2024/7926619","DOIUrl":null,"url":null,"abstract":"This study proposes an uncertainty quantification method based on deep neural networks and Catmull–Clark subdivision surfaces for vibroacoustic problems. The deep neural networks are utilized as a surrogate model to efficiently generate samples for stochastic analysis. The training data are obtained from numerical simulation by coupling the isogeometric finite element method and the isogeometric boundary element method. In the simulation, the geometric models are constructed with Catmull–Clark subdivision surfaces, and meantime, the physical fields are discretized with the same spline functions as used in geometric modelling. Multiple deep neural networks are trained to predict the sound pressure response for various parameters with different numbers and dimensions in vibroacoustic problems. Numerical examples are provided to demonstrate the effectiveness of the proposed method.","PeriodicalId":21915,"journal":{"name":"Shock and Vibration","volume":"37 1","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2024-02-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Shock and Vibration","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1155/2024/7926619","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ACOUSTICS","Score":null,"Total":0}
引用次数: 0
Abstract
This study proposes an uncertainty quantification method based on deep neural networks and Catmull–Clark subdivision surfaces for vibroacoustic problems. The deep neural networks are utilized as a surrogate model to efficiently generate samples for stochastic analysis. The training data are obtained from numerical simulation by coupling the isogeometric finite element method and the isogeometric boundary element method. In the simulation, the geometric models are constructed with Catmull–Clark subdivision surfaces, and meantime, the physical fields are discretized with the same spline functions as used in geometric modelling. Multiple deep neural networks are trained to predict the sound pressure response for various parameters with different numbers and dimensions in vibroacoustic problems. Numerical examples are provided to demonstrate the effectiveness of the proposed method.
期刊介绍:
Shock and Vibration publishes papers on all aspects of shock and vibration, especially in relation to civil, mechanical and aerospace engineering applications, as well as transport, materials and geoscience. Papers may be theoretical or experimental, and either fundamental or highly applied.