Accelerated forward–backward algorithms for structured monotone inclusions

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Paul-Emile Maingé, André Weng-Law
{"title":"Accelerated forward–backward algorithms for structured monotone inclusions","authors":"Paul-Emile Maingé, André Weng-Law","doi":"10.1007/s10589-023-00547-3","DOIUrl":null,"url":null,"abstract":"<p>In this paper, we develop rapidly convergent forward–backward algorithms for computing zeroes of the sum of two maximally monotone operators. A modification of the classical forward–backward method is considered, by incorporating an inertial term (closed to the acceleration techniques introduced by Nesterov), a constant relaxation factor and a correction term, along with a preconditioning process. In a Hilbert space setting, we prove the weak convergence to equilibria of the iterates <span>\\((x_n)\\)</span>, with worst-case rates of <span>\\( o(n^{-1})\\)</span> in terms of both the discrete velocity and the fixed point residual, instead of the rates of <span>\\(\\mathcal {O}(n^{-1/2})\\)</span> classically established for related algorithms. Our procedure can be also adapted to more general monotone inclusions. In particular, we propose a fast primal-dual algorithmic solution to some class of convex-concave saddle point problems. In addition, we provide a well-adapted framework for solving this class of problems by means of standard proximal-like algorithms dedicated to structured monotone inclusions. Numerical experiments are also performed so as to enlighten the efficiency of the proposed strategy.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-02-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10589-023-00547-3","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we develop rapidly convergent forward–backward algorithms for computing zeroes of the sum of two maximally monotone operators. A modification of the classical forward–backward method is considered, by incorporating an inertial term (closed to the acceleration techniques introduced by Nesterov), a constant relaxation factor and a correction term, along with a preconditioning process. In a Hilbert space setting, we prove the weak convergence to equilibria of the iterates \((x_n)\), with worst-case rates of \( o(n^{-1})\) in terms of both the discrete velocity and the fixed point residual, instead of the rates of \(\mathcal {O}(n^{-1/2})\) classically established for related algorithms. Our procedure can be also adapted to more general monotone inclusions. In particular, we propose a fast primal-dual algorithmic solution to some class of convex-concave saddle point problems. In addition, we provide a well-adapted framework for solving this class of problems by means of standard proximal-like algorithms dedicated to structured monotone inclusions. Numerical experiments are also performed so as to enlighten the efficiency of the proposed strategy.

Abstract Image

结构单调夹杂的加速前向后向算法
在本文中,我们为计算两个最大单调算子之和的零点开发了快速收敛的前向后向算法。通过加入惯性项(与涅斯捷罗夫引入的加速技术相近)、常数松弛因子和修正项以及预处理过程,我们考虑了对经典前向后向方法的修改。在希尔伯特空间环境下,我们证明了迭代次数 \((x_n)\) 对均衡的弱收敛性,在离散速度和定点残差方面的最坏情况速率为 \( o(n^{-1})\) ,而不是相关算法的经典速率 \(\mathcal {O}(n^{-1/2})\) 。我们的程序也可以适用于更一般的单调夹杂。特别是,我们提出了一类凸凹鞍点问题的快速初等双算法解决方案。此外,我们还提供了一个很好的适应框架,通过专门用于结构单调夹杂的标准近似算法来解决这类问题。我们还进行了数值实验,以提高所提策略的效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信