Enmsp: an elastic-net multi-step screening procedure for high-dimensional regression

IF 1.6 2区 数学 Q2 COMPUTER SCIENCE, THEORY & METHODS
Yushan Xue, Jie Ren, Bin Yang
{"title":"Enmsp: an elastic-net multi-step screening procedure for high-dimensional regression","authors":"Yushan Xue, Jie Ren, Bin Yang","doi":"10.1007/s11222-024-10394-9","DOIUrl":null,"url":null,"abstract":"<p>To improve the estimation efficiency of high-dimensional regression problems, penalized regularization is routinely used. However, accurately estimating the model remains challenging, particularly in the presence of correlated effects, wherein irrelevant covariates exhibit strong correlation with relevant ones. This situation, referred to as correlated data, poses additional complexities for model estimation. In this paper, we propose the elastic-net multi-step screening procedure (EnMSP), an iterative algorithm designed to recover sparse linear models in the context of correlated data. EnMSP uses a small repeated penalty strategy to identify truly relevant covariates in a few iterations. Specifically, in each iteration, EnMSP enhances the adaptive lasso method by adding a weighted <span>\\(l_2\\)</span> penalty, which improves the selection of relevant covariates. The method is shown to select the true model and achieve the <span>\\(l_2\\)</span>-norm error bound under certain conditions. The effectiveness of EnMSP is demonstrated through numerical comparisons and applications in financial data.</p>","PeriodicalId":22058,"journal":{"name":"Statistics and Computing","volume":"26 1","pages":""},"PeriodicalIF":1.6000,"publicationDate":"2024-02-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Statistics and Computing","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s11222-024-10394-9","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

To improve the estimation efficiency of high-dimensional regression problems, penalized regularization is routinely used. However, accurately estimating the model remains challenging, particularly in the presence of correlated effects, wherein irrelevant covariates exhibit strong correlation with relevant ones. This situation, referred to as correlated data, poses additional complexities for model estimation. In this paper, we propose the elastic-net multi-step screening procedure (EnMSP), an iterative algorithm designed to recover sparse linear models in the context of correlated data. EnMSP uses a small repeated penalty strategy to identify truly relevant covariates in a few iterations. Specifically, in each iteration, EnMSP enhances the adaptive lasso method by adding a weighted \(l_2\) penalty, which improves the selection of relevant covariates. The method is shown to select the true model and achieve the \(l_2\)-norm error bound under certain conditions. The effectiveness of EnMSP is demonstrated through numerical comparisons and applications in financial data.

Abstract Image

Enmsp:用于高维回归的弹性网多步筛选程序
为了提高高维回归问题的估计效率,通常会使用惩罚正则化。然而,准确估计模型仍然具有挑战性,尤其是在存在相关效应的情况下,即无关协变量与相关协变量表现出很强的相关性。这种情况被称为相关数据,给模型估计带来了额外的复杂性。在本文中,我们提出了弹性网多步筛选程序(EnMSP),这是一种迭代算法,旨在恢复相关数据背景下的稀疏线性模型。EnMSP 采用小规模重复惩罚策略,在几次迭代中识别出真正相关的协变量。具体来说,在每次迭代中,EnMSP通过添加加权(l_2\)惩罚来增强自适应套索方法,从而改进相关协变量的选择。结果表明,该方法可以选择真实模型,并在一定条件下实现 \(l_2\)-norm 误差约束。通过数值比较和在金融数据中的应用,证明了 EnMSP 的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Statistics and Computing
Statistics and Computing 数学-计算机:理论方法
CiteScore
3.20
自引率
4.50%
发文量
93
审稿时长
6-12 weeks
期刊介绍: Statistics and Computing is a bi-monthly refereed journal which publishes papers covering the range of the interface between the statistical and computing sciences. In particular, it addresses the use of statistical concepts in computing science, for example in machine learning, computer vision and data analytics, as well as the use of computers in data modelling, prediction and analysis. Specific topics which are covered include: techniques for evaluating analytically intractable problems such as bootstrap resampling, Markov chain Monte Carlo, sequential Monte Carlo, approximate Bayesian computation, search and optimization methods, stochastic simulation and Monte Carlo, graphics, computer environments, statistical approaches to software errors, information retrieval, machine learning, statistics of databases and database technology, huge data sets and big data analytics, computer algebra, graphical models, image processing, tomography, inverse problems and uncertainty quantification. In addition, the journal contains original research reports, authoritative review papers, discussed papers, and occasional special issues on particular topics or carrying proceedings of relevant conferences. Statistics and Computing also publishes book review and software review sections.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信