Pseudometric spaces: From minimality to maximality in the groups of combinatorial self-similarities

IF 0.9 3区 数学 Q2 MATHEMATICS
Viktoriia Bilet, Oleksiy Dovgoshey
{"title":"Pseudometric spaces: From minimality to maximality in the groups of combinatorial self-similarities","authors":"Viktoriia Bilet, Oleksiy Dovgoshey","doi":"10.1515/agms-2023-0103","DOIUrl":null,"url":null,"abstract":"The group of combinatorial self-similarities of a pseudometric space <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_agms-2023-0103_eq_001.png\" /> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mo>(</m:mo> <m:mrow> <m:mi>X</m:mi> <m:mo>,</m:mo> <m:mi>d</m:mi> </m:mrow> <m:mo>)</m:mo> </m:mrow> </m:math> <jats:tex-math>\\left(X,d)</jats:tex-math> </jats:alternatives> </jats:inline-formula> is the maximal subgroup of the symmetric group <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_agms-2023-0103_eq_002.png\" /> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mi mathvariant=\"normal\">Sym</m:mi> <m:mrow> <m:mo>(</m:mo> <m:mrow> <m:mi>X</m:mi> </m:mrow> <m:mo>)</m:mo> </m:mrow> </m:math> <jats:tex-math>{\\rm{Sym}}\\left(X)</jats:tex-math> </jats:alternatives> </jats:inline-formula> whose elements preserve the four-point equality <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_agms-2023-0103_eq_003.png\" /> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mi>d</m:mi> <m:mrow> <m:mo>(</m:mo> <m:mrow> <m:mi>x</m:mi> <m:mo>,</m:mo> <m:mi>y</m:mi> </m:mrow> <m:mo>)</m:mo> </m:mrow> <m:mo>=</m:mo> <m:mi>d</m:mi> <m:mrow> <m:mo>(</m:mo> <m:mrow> <m:mi>u</m:mi> <m:mo>,</m:mo> <m:mi>v</m:mi> </m:mrow> <m:mo>)</m:mo> </m:mrow> </m:math> <jats:tex-math>d\\left(x,y)=d\\left(u,v)</jats:tex-math> </jats:alternatives> </jats:inline-formula>. Let us denote by <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_agms-2023-0103_eq_004.png\" /> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mi mathvariant=\"script\">ℐP</m:mi> </m:math> <jats:tex-math>{\\mathcal{ {\\mathcal I} P}}</jats:tex-math> </jats:alternatives> </jats:inline-formula> the class of all pseudometric spaces <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_agms-2023-0103_eq_005.png\" /> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mo>(</m:mo> <m:mrow> <m:mi>X</m:mi> <m:mo>,</m:mo> <m:mi>d</m:mi> </m:mrow> <m:mo>)</m:mo> </m:mrow> </m:math> <jats:tex-math>\\left(X,d)</jats:tex-math> </jats:alternatives> </jats:inline-formula> for which every combinatorial self-similarity <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_agms-2023-0103_eq_006.png\" /> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mi mathvariant=\"normal\">Φ</m:mi> <m:mo>:</m:mo> <m:mi>X</m:mi> <m:mo>→</m:mo> <m:mi>X</m:mi> </m:math> <jats:tex-math>\\Phi :X\\to X</jats:tex-math> </jats:alternatives> </jats:inline-formula> satisfies the equality <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_agms-2023-0103_eq_007.png\" /> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mi>d</m:mi> <m:mrow> <m:mo>(</m:mo> <m:mrow> <m:mi>x</m:mi> <m:mo>,</m:mo> <m:mi mathvariant=\"normal\">Φ</m:mi> <m:mrow> <m:mo>(</m:mo> <m:mrow> <m:mi>x</m:mi> </m:mrow> <m:mo>)</m:mo> </m:mrow> </m:mrow> <m:mo>)</m:mo> </m:mrow> <m:mo>=</m:mo> <m:mn>0</m:mn> <m:mo>,</m:mo> </m:math> <jats:tex-math>d\\left(x,\\Phi \\left(x))=0,</jats:tex-math> </jats:alternatives> </jats:inline-formula> but all permutations of metric reflection of <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_agms-2023-0103_eq_008.png\" /> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mo>(</m:mo> <m:mrow> <m:mi>X</m:mi> <m:mo>,</m:mo> <m:mi>d</m:mi> </m:mrow> <m:mo>)</m:mo> </m:mrow> </m:math> <jats:tex-math>\\left(X,d)</jats:tex-math> </jats:alternatives> </jats:inline-formula> are combinatorial self-similarities of this reflection. The structure of <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_agms-2023-0103_eq_009.png\" /> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mi mathvariant=\"script\">ℐP</m:mi> </m:math> <jats:tex-math>{\\mathcal{ {\\mathcal I} P}}</jats:tex-math> </jats:alternatives> </jats:inline-formula>-spaces is fully described.","PeriodicalId":48637,"journal":{"name":"Analysis and Geometry in Metric Spaces","volume":"168-169 1","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2024-02-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Analysis and Geometry in Metric Spaces","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/agms-2023-0103","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

The group of combinatorial self-similarities of a pseudometric space ( X , d ) \left(X,d) is the maximal subgroup of the symmetric group Sym ( X ) {\rm{Sym}}\left(X) whose elements preserve the four-point equality d ( x , y ) = d ( u , v ) d\left(x,y)=d\left(u,v) . Let us denote by ℐP {\mathcal{ {\mathcal I} P}} the class of all pseudometric spaces ( X , d ) \left(X,d) for which every combinatorial self-similarity Φ : X X \Phi :X\to X satisfies the equality d ( x , Φ ( x ) ) = 0 , d\left(x,\Phi \left(x))=0, but all permutations of metric reflection of ( X , d ) \left(X,d) are combinatorial self-similarities of this reflection. The structure of ℐP {\mathcal{ {\mathcal I} P}} -spaces is fully described.
伪几何空间:组合自相似性组中的最小性到最大性
伪几何空间 ( X , d ) \left(X,d)的组合自相似性群是对称群 Sym ( X ) {\rm{Sym}}\left(X) 的最大子群,其元素保持四点相等 d ( x , y ) = d ( u , v ) d\left(x,y)=d\left(u,v) 。让我们用 ℐP {\mathcal{ {\mathcal I} P}} 表示所有伪几何空间 ( X , d ) 的类 \left(X,d),其中每个组合自相似性 Φ : X → X \Phi :X\to X 满足等式 d ( x , Φ ( x ) ) = 0 , d\left(x,\Phi \left(x))=0,但是 ( X , d ) \left(X,d)的度量反射的所有排列都是这种反射的组合自相似性。对ℐP {\mathcal{ {\mathcal I} P}} 的结构进行了全面描述。 -空间的结构得到了充分描述。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Analysis and Geometry in Metric Spaces
Analysis and Geometry in Metric Spaces Mathematics-Geometry and Topology
CiteScore
1.80
自引率
0.00%
发文量
8
审稿时长
16 weeks
期刊介绍: Analysis and Geometry in Metric Spaces is an open access electronic journal that publishes cutting-edge research on analytical and geometrical problems in metric spaces and applications. We strive to present a forum where all aspects of these problems can be discussed. AGMS is devoted to the publication of results on these and related topics: Geometric inequalities in metric spaces, Geometric measure theory and variational problems in metric spaces, Analytic and geometric problems in metric measure spaces, probability spaces, and manifolds with density, Analytic and geometric problems in sub-riemannian manifolds, Carnot groups, and pseudo-hermitian manifolds. Geometric control theory, Curvature in metric and length spaces, Geometric group theory, Harmonic Analysis. Potential theory, Mass transportation problems, Quasiconformal and quasiregular mappings. Quasiconformal geometry, PDEs associated to analytic and geometric problems in metric spaces.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信