{"title":"Representative Functions, Variational Convergence and Almost Convexity","authors":"A. Eberhard, R. Wenczel","doi":"10.1007/s11228-024-00708-4","DOIUrl":null,"url":null,"abstract":"<p>We develop a new epi-convergence based on the use of <i>bounded</i> convergent nets on the product topology of the strong topology on the primal space and weak star topology on the dual space of a general real Banach space. We study the propagation of the associated variational convergences through conjugation of convex functions defined on this product space. These results are then applied to the problem of construction of a bigger-conjugate representative function for the recession operator associated with a maximal monotone operator on this real Banach space. This is then used to study the relationship between the recession operator of a maximal monotone operator and the normal–cone operator associated with the closed, convex hull of the domain of that monotone operator. This allows us to show that the strong closure of the domain of any maximal monotone operator is convex in a general real Banach space.</p>","PeriodicalId":49537,"journal":{"name":"Set-Valued and Variational Analysis","volume":"19 1","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2024-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Set-Valued and Variational Analysis","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s11228-024-00708-4","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
We develop a new epi-convergence based on the use of bounded convergent nets on the product topology of the strong topology on the primal space and weak star topology on the dual space of a general real Banach space. We study the propagation of the associated variational convergences through conjugation of convex functions defined on this product space. These results are then applied to the problem of construction of a bigger-conjugate representative function for the recession operator associated with a maximal monotone operator on this real Banach space. This is then used to study the relationship between the recession operator of a maximal monotone operator and the normal–cone operator associated with the closed, convex hull of the domain of that monotone operator. This allows us to show that the strong closure of the domain of any maximal monotone operator is convex in a general real Banach space.
期刊介绍:
The scope of the journal includes variational analysis and its applications to mathematics, economics, and engineering; set-valued analysis and generalized differential calculus; numerical and computational aspects of set-valued and variational analysis; variational and set-valued techniques in the presence of uncertainty; equilibrium problems; variational principles and calculus of variations; optimal control; viability theory; variational inequalities and variational convergence; fixed points of set-valued mappings; differential, integral, and operator inclusions; methods of variational and set-valued analysis in models of mechanics, systems control, economics, computer vision, finance, and applied sciences. High quality papers dealing with any other theoretical aspect of control and optimization are also considered for publication.