RiskMiner: Discovering Formulaic Alphas via Risk Seeking Monte Carlo Tree Search

Tao Ren, Ruihan Zhou, Jinyang Jiang, Jiafeng Liang, Qinghao Wang, Yijie Peng
{"title":"RiskMiner: Discovering Formulaic Alphas via Risk Seeking Monte Carlo Tree Search","authors":"Tao Ren, Ruihan Zhou, Jinyang Jiang, Jiafeng Liang, Qinghao Wang, Yijie Peng","doi":"arxiv-2402.07080","DOIUrl":null,"url":null,"abstract":"The formulaic alphas are mathematical formulas that transform raw stock data\ninto indicated signals. In the industry, a collection of formulaic alphas is\ncombined to enhance modeling accuracy. Existing alpha mining only employs the\nneural network agent, unable to utilize the structural information of the\nsolution space. Moreover, they didn't consider the correlation between alphas\nin the collection, which limits the synergistic performance. To address these\nproblems, we propose a novel alpha mining framework, which formulates the alpha\nmining problems as a reward-dense Markov Decision Process (MDP) and solves the\nMDP by the risk-seeking Monte Carlo Tree Search (MCTS). The MCTS-based agent\nfully exploits the structural information of discrete solution space and the\nrisk-seeking policy explicitly optimizes the best-case performance rather than\naverage outcomes. Comprehensive experiments are conducted to demonstrate the\nefficiency of our framework. Our method outperforms all state-of-the-art\nbenchmarks on two real-world stock sets under various metrics. Backtest\nexperiments show that our alphas achieve the most profitable results under a\nrealistic trading setting.","PeriodicalId":501294,"journal":{"name":"arXiv - QuantFin - Computational Finance","volume":"11 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-02-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - QuantFin - Computational Finance","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2402.07080","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The formulaic alphas are mathematical formulas that transform raw stock data into indicated signals. In the industry, a collection of formulaic alphas is combined to enhance modeling accuracy. Existing alpha mining only employs the neural network agent, unable to utilize the structural information of the solution space. Moreover, they didn't consider the correlation between alphas in the collection, which limits the synergistic performance. To address these problems, we propose a novel alpha mining framework, which formulates the alpha mining problems as a reward-dense Markov Decision Process (MDP) and solves the MDP by the risk-seeking Monte Carlo Tree Search (MCTS). The MCTS-based agent fully exploits the structural information of discrete solution space and the risk-seeking policy explicitly optimizes the best-case performance rather than average outcomes. Comprehensive experiments are conducted to demonstrate the efficiency of our framework. Our method outperforms all state-of-the-art benchmarks on two real-world stock sets under various metrics. Backtest experiments show that our alphas achieve the most profitable results under a realistic trading setting.
RiskMiner:通过风险寻求蒙特卡洛树搜索发现公式字母表
公式字母是将原始股票数据转换为指示信号的数学公式。在行业中,为了提高建模的准确性,会将一系列公式字母组合在一起。现有的阿尔法挖掘仅采用神经网络代理,无法利用解空间的结构信息。此外,他们也没有考虑到集合中字母之间的相关性,从而限制了协同性能。为了解决这些问题,我们提出了一种新颖的阿尔法挖掘框架,它将阿尔法挖掘问题表述为一个奖励密集的马尔可夫决策过程(MDP),并通过寻求风险的蒙特卡洛树搜索(MCTS)来求解该MDP。基于蒙特卡洛树搜索的代理充分利用了离散解空间的结构信息,其风险寻求策略明确优化了最佳情况下的性能,而不是平均结果。我们进行了全面的实验来证明我们框架的效率。在两个真实世界股票集上,我们的方法在各种指标上都优于所有最新基准。回溯实验表明,在现实交易环境下,我们的字母组合取得了最有利可图的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信