{"title":"Contrastive Language-Knowledge Graph Pre-training","authors":"Xiaowei Yuan, Kang Liu, Yequan Wang","doi":"10.1145/3644820","DOIUrl":null,"url":null,"abstract":"<p>Recent years have witnessed a surge of academic interest in knowledge-enhanced pre-trained language models (PLMs) that incorporate factual knowledge to enhance knowledge-driven applications. Nevertheless, existing studies primarily focus on shallow, static, and separately pre-trained entity embeddings, with few delving into the potential of deep contextualized knowledge representation for knowledge incorporation. Consequently, the performance gains of such models remain limited. In this paper, we introduce a simple yet effective knowledge-enhanced model, <span>College</span> (<b>Co</b>ntrastive <b>L</b>anguage-Know<b>le</b>dge <b>G</b>raph Pr<b>e</b>-training), which leverages contrastive learning to incorporate factual knowledge into PLMs. This approach maintains the knowledge in its original graph structure to provide the most available information and circumvents the issue of heterogeneous embedding fusion. Experimental results demonstrate that our approach achieves more effective results on several knowledge-intensive tasks compared to previous state-of-the-art methods. Our code and trained models are available at https://github.com/Stacy027/COLLEGE.</p>","PeriodicalId":54312,"journal":{"name":"ACM Transactions on Asian and Low-Resource Language Information Processing","volume":"176 1","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2024-02-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Asian and Low-Resource Language Information Processing","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1145/3644820","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Recent years have witnessed a surge of academic interest in knowledge-enhanced pre-trained language models (PLMs) that incorporate factual knowledge to enhance knowledge-driven applications. Nevertheless, existing studies primarily focus on shallow, static, and separately pre-trained entity embeddings, with few delving into the potential of deep contextualized knowledge representation for knowledge incorporation. Consequently, the performance gains of such models remain limited. In this paper, we introduce a simple yet effective knowledge-enhanced model, College (Contrastive Language-Knowledge Graph Pre-training), which leverages contrastive learning to incorporate factual knowledge into PLMs. This approach maintains the knowledge in its original graph structure to provide the most available information and circumvents the issue of heterogeneous embedding fusion. Experimental results demonstrate that our approach achieves more effective results on several knowledge-intensive tasks compared to previous state-of-the-art methods. Our code and trained models are available at https://github.com/Stacy027/COLLEGE.
期刊介绍:
The ACM Transactions on Asian and Low-Resource Language Information Processing (TALLIP) publishes high quality original archival papers and technical notes in the areas of computation and processing of information in Asian languages, low-resource languages of Africa, Australasia, Oceania and the Americas, as well as related disciplines. The subject areas covered by TALLIP include, but are not limited to:
-Computational Linguistics: including computational phonology, computational morphology, computational syntax (e.g. parsing), computational semantics, computational pragmatics, etc.
-Linguistic Resources: including computational lexicography, terminology, electronic dictionaries, cross-lingual dictionaries, electronic thesauri, etc.
-Hardware and software algorithms and tools for Asian or low-resource language processing, e.g., handwritten character recognition.
-Information Understanding: including text understanding, speech understanding, character recognition, discourse processing, dialogue systems, etc.
-Machine Translation involving Asian or low-resource languages.
-Information Retrieval: including natural language processing (NLP) for concept-based indexing, natural language query interfaces, semantic relevance judgments, etc.
-Information Extraction and Filtering: including automatic abstraction, user profiling, etc.
-Speech processing: including text-to-speech synthesis and automatic speech recognition.
-Multimedia Asian Information Processing: including speech, image, video, image/text translation, etc.
-Cross-lingual information processing involving Asian or low-resource languages.
-Papers that deal in theory, systems design, evaluation and applications in the aforesaid subjects are appropriate for TALLIP. Emphasis will be placed on the originality and the practical significance of the reported research.