The prescribed curvature problem for entire hypersurfaces in Minkowski space

IF 1.8 1区 数学 Q1 MATHEMATICS
Changyu Ren, Zhizhang Wang, Ling Xiao
{"title":"The prescribed curvature problem for entire hypersurfaces in Minkowski space","authors":"Changyu Ren, Zhizhang Wang, Ling Xiao","doi":"10.2140/apde.2024.17.1","DOIUrl":null,"url":null,"abstract":"<p>We prove three results in this paper: First, we prove, for a wide class of functions <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>φ</mi>\n<mo>∈</mo> <msup><mrow><mi>C</mi></mrow><mrow><mn>2</mn></mrow></msup><mo stretchy=\"false\">(</mo><msup><mrow><mi mathvariant=\"double-struck\">𝕊</mi></mrow><mrow><mi>n</mi><mo>−</mo><mn>1</mn></mrow></msup><mo stretchy=\"false\">)</mo></math> and <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>ψ</mi><mo stretchy=\"false\">(</mo><mi>X</mi><mo>,</mo><mi>ν</mi><mo stretchy=\"false\">)</mo>\n<mo>∈</mo> <msup><mrow><mi>C</mi></mrow><mrow><mn>2</mn></mrow></msup><mo stretchy=\"false\">(</mo><msup><mrow><mi>ℝ</mi></mrow><mrow><mi>n</mi><mo>+</mo><mn>1</mn></mrow></msup><mo>×</mo> <msup><mrow><mi>ℍ</mi></mrow><mrow><mi>n</mi></mrow></msup><mo stretchy=\"false\">)</mo></math>, there exists a unique, entire, strictly convex, spacelike hypersurface <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><msub><mrow><mi mathvariant=\"bold-script\">ℳ</mi></mrow><mrow><mi>u</mi></mrow></msub></math> satisfying <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><msub><mrow><mi>σ</mi></mrow><mrow><mi>k</mi></mrow></msub><mo stretchy=\"false\">(</mo><mi>κ</mi><mo stretchy=\"false\">[</mo><msub><mrow><mi mathvariant=\"bold-script\">ℳ</mi></mrow><mrow><mi>u</mi></mrow></msub><mo stretchy=\"false\">]</mo><mo stretchy=\"false\">)</mo>\n<mo>=</mo>\n<mi>ψ</mi><mo stretchy=\"false\">(</mo><mi>X</mi><mo>,</mo><mi>ν</mi><mo stretchy=\"false\">)</mo></math> and <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>u</mi><mo stretchy=\"false\">(</mo><mi>x</mi><mo stretchy=\"false\">)</mo>\n<mo>→</mo><mo>|</mo><mi>x</mi><mo>|</mo>\n<mo>+</mo>\n<mi>φ</mi><mo stretchy=\"false\">(</mo><mi>x</mi><mo>∕</mo><mo>|</mo><mi>x</mi><mo>|</mo><mo stretchy=\"false\">)</mo></math> as <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mo>|</mo><mi>x</mi><mo>|</mo><mo>→</mo><mi>∞</mi></math>. Second, when <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>k</mi>\n<mo>=</mo>\n<mi>n</mi><mo>−</mo><mn>1</mn><mo>,</mo><mi>n</mi><mo>−</mo><mn>2</mn></math>, we show the existence and uniqueness of an entire, <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>k</mi></math>-convex, spacelike hypersurface <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><msub><mrow><mi mathvariant=\"bold-script\">ℳ</mi></mrow><mrow><mi>u</mi></mrow></msub></math> satisfying <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><msub><mrow><mi>σ</mi></mrow><mrow><mi>k</mi></mrow></msub><mo stretchy=\"false\">(</mo><mi>κ</mi><mo stretchy=\"false\">[</mo><msub><mrow><mi mathvariant=\"bold-script\">ℳ</mi></mrow><mrow><mi>u</mi></mrow></msub><mo stretchy=\"false\">]</mo><mo stretchy=\"false\">)</mo>\n<mo>=</mo>\n<mi>ψ</mi><mo stretchy=\"false\">(</mo><mi>x</mi><mo>,</mo><mi>u</mi><mo stretchy=\"false\">(</mo><mi>x</mi><mo stretchy=\"false\">)</mo><mo stretchy=\"false\">)</mo></math> and <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>u</mi><mo stretchy=\"false\">(</mo><mi>x</mi><mo stretchy=\"false\">)</mo>\n<mo>→</mo><mo>|</mo><mi>x</mi><mo>|</mo>\n<mo>+</mo>\n<mi>φ</mi><mo stretchy=\"false\">(</mo><mi>x</mi><mo>∕</mo><mo>|</mo><mi>x</mi><mo>|</mo><mo stretchy=\"false\">)</mo></math> as <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mo>|</mo><mi>x</mi><mo>|</mo><mo>→</mo><mi>∞</mi></math>. Last, we obtain the existence and uniqueness of entire, strictly convex, downward translating solitons <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><msub><mrow><mi mathvariant=\"bold-script\">ℳ</mi></mrow><mrow><mi>u</mi></mrow></msub></math> with prescribed asymptotic behavior at infinity for <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><msub><mrow><mi>σ</mi></mrow><mrow><mi>k</mi></mrow></msub></math> curvature flow equations. Moreover, we prove that the downward translating solitons <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><msub><mrow><mi mathvariant=\"bold-script\">ℳ</mi></mrow><mrow><mi>u</mi></mrow></msub></math> have bounded principal curvatures. </p>","PeriodicalId":49277,"journal":{"name":"Analysis & PDE","volume":"27 1","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2024-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Analysis & PDE","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.2140/apde.2024.17.1","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

We prove three results in this paper: First, we prove, for a wide class of functions φ C2(𝕊n1) and ψ(X,ν) C2(n+1× n), there exists a unique, entire, strictly convex, spacelike hypersurface u satisfying σk(κ[u]) = ψ(X,ν) and u(x) |x| + φ(x|x|) as |x|. Second, when k = n1,n2, we show the existence and uniqueness of an entire, k-convex, spacelike hypersurface u satisfying σk(κ[u]) = ψ(x,u(x)) and u(x) |x| + φ(x|x|) as |x|. Last, we obtain the existence and uniqueness of entire, strictly convex, downward translating solitons u with prescribed asymptotic behavior at infinity for σk curvature flow equations. Moreover, we prove that the downward translating solitons u have bounded principal curvatures.

闵科夫斯基空间中整个超曲面的规定曲率问题
我们在本文中证明了三个结果:首先,我们证明,对于一大类函数φ∈C2(ᵔn-1)和ψ(X,ν)∈C2(ℝn+1× ℍn),存在一个唯一的、存在一个唯一的、完整的、严格凸的空间似超曲面 ℳu,满足 σk(κ[ℳu])=ψ(X,ν),且 u(x)→|x|+φ(x∕|x|) 为 |x|→∞。其次,当 k=n-1,n-2 时,我们证明了满足 σk(κ[ℳu])=ψ(x,u(x)) 和 u(x)→|x||+φ(x∕|x|) 的整个、k-凸、空间似超曲面 ℳu 的存在性和唯一性。最后,对于σk曲率流方程,我们得到了在无穷远处具有规定渐近行为的整个、严格凸、向下平移孤子ℳu的存在性和唯一性。此外,我们还证明了向下平移孤子ℳu 具有有界主曲率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Analysis & PDE
Analysis & PDE MATHEMATICS, APPLIED-MATHEMATICS
CiteScore
3.80
自引率
0.00%
发文量
38
审稿时长
6 months
期刊介绍: APDE aims to be the leading specialized scholarly publication in mathematical analysis. The full editorial board votes on all articles, accounting for the journal’s exceptionally high standard and ensuring its broad profile.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信