{"title":"The prescribed curvature problem for entire hypersurfaces in Minkowski space","authors":"Changyu Ren, Zhizhang Wang, Ling Xiao","doi":"10.2140/apde.2024.17.1","DOIUrl":null,"url":null,"abstract":"<p>We prove three results in this paper: First, we prove, for a wide class of functions <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>φ</mi>\n<mo>∈</mo> <msup><mrow><mi>C</mi></mrow><mrow><mn>2</mn></mrow></msup><mo stretchy=\"false\">(</mo><msup><mrow><mi mathvariant=\"double-struck\">𝕊</mi></mrow><mrow><mi>n</mi><mo>−</mo><mn>1</mn></mrow></msup><mo stretchy=\"false\">)</mo></math> and <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>ψ</mi><mo stretchy=\"false\">(</mo><mi>X</mi><mo>,</mo><mi>ν</mi><mo stretchy=\"false\">)</mo>\n<mo>∈</mo> <msup><mrow><mi>C</mi></mrow><mrow><mn>2</mn></mrow></msup><mo stretchy=\"false\">(</mo><msup><mrow><mi>ℝ</mi></mrow><mrow><mi>n</mi><mo>+</mo><mn>1</mn></mrow></msup><mo>×</mo> <msup><mrow><mi>ℍ</mi></mrow><mrow><mi>n</mi></mrow></msup><mo stretchy=\"false\">)</mo></math>, there exists a unique, entire, strictly convex, spacelike hypersurface <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><msub><mrow><mi mathvariant=\"bold-script\">ℳ</mi></mrow><mrow><mi>u</mi></mrow></msub></math> satisfying <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><msub><mrow><mi>σ</mi></mrow><mrow><mi>k</mi></mrow></msub><mo stretchy=\"false\">(</mo><mi>κ</mi><mo stretchy=\"false\">[</mo><msub><mrow><mi mathvariant=\"bold-script\">ℳ</mi></mrow><mrow><mi>u</mi></mrow></msub><mo stretchy=\"false\">]</mo><mo stretchy=\"false\">)</mo>\n<mo>=</mo>\n<mi>ψ</mi><mo stretchy=\"false\">(</mo><mi>X</mi><mo>,</mo><mi>ν</mi><mo stretchy=\"false\">)</mo></math> and <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>u</mi><mo stretchy=\"false\">(</mo><mi>x</mi><mo stretchy=\"false\">)</mo>\n<mo>→</mo><mo>|</mo><mi>x</mi><mo>|</mo>\n<mo>+</mo>\n<mi>φ</mi><mo stretchy=\"false\">(</mo><mi>x</mi><mo>∕</mo><mo>|</mo><mi>x</mi><mo>|</mo><mo stretchy=\"false\">)</mo></math> as <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mo>|</mo><mi>x</mi><mo>|</mo><mo>→</mo><mi>∞</mi></math>. Second, when <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>k</mi>\n<mo>=</mo>\n<mi>n</mi><mo>−</mo><mn>1</mn><mo>,</mo><mi>n</mi><mo>−</mo><mn>2</mn></math>, we show the existence and uniqueness of an entire, <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>k</mi></math>-convex, spacelike hypersurface <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><msub><mrow><mi mathvariant=\"bold-script\">ℳ</mi></mrow><mrow><mi>u</mi></mrow></msub></math> satisfying <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><msub><mrow><mi>σ</mi></mrow><mrow><mi>k</mi></mrow></msub><mo stretchy=\"false\">(</mo><mi>κ</mi><mo stretchy=\"false\">[</mo><msub><mrow><mi mathvariant=\"bold-script\">ℳ</mi></mrow><mrow><mi>u</mi></mrow></msub><mo stretchy=\"false\">]</mo><mo stretchy=\"false\">)</mo>\n<mo>=</mo>\n<mi>ψ</mi><mo stretchy=\"false\">(</mo><mi>x</mi><mo>,</mo><mi>u</mi><mo stretchy=\"false\">(</mo><mi>x</mi><mo stretchy=\"false\">)</mo><mo stretchy=\"false\">)</mo></math> and <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>u</mi><mo stretchy=\"false\">(</mo><mi>x</mi><mo stretchy=\"false\">)</mo>\n<mo>→</mo><mo>|</mo><mi>x</mi><mo>|</mo>\n<mo>+</mo>\n<mi>φ</mi><mo stretchy=\"false\">(</mo><mi>x</mi><mo>∕</mo><mo>|</mo><mi>x</mi><mo>|</mo><mo stretchy=\"false\">)</mo></math> as <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mo>|</mo><mi>x</mi><mo>|</mo><mo>→</mo><mi>∞</mi></math>. Last, we obtain the existence and uniqueness of entire, strictly convex, downward translating solitons <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><msub><mrow><mi mathvariant=\"bold-script\">ℳ</mi></mrow><mrow><mi>u</mi></mrow></msub></math> with prescribed asymptotic behavior at infinity for <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><msub><mrow><mi>σ</mi></mrow><mrow><mi>k</mi></mrow></msub></math> curvature flow equations. Moreover, we prove that the downward translating solitons <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><msub><mrow><mi mathvariant=\"bold-script\">ℳ</mi></mrow><mrow><mi>u</mi></mrow></msub></math> have bounded principal curvatures. </p>","PeriodicalId":49277,"journal":{"name":"Analysis & PDE","volume":"27 1","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2024-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Analysis & PDE","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.2140/apde.2024.17.1","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
We prove three results in this paper: First, we prove, for a wide class of functions and , there exists a unique, entire, strictly convex, spacelike hypersurface satisfying and as . Second, when , we show the existence and uniqueness of an entire, -convex, spacelike hypersurface satisfying and as . Last, we obtain the existence and uniqueness of entire, strictly convex, downward translating solitons with prescribed asymptotic behavior at infinity for curvature flow equations. Moreover, we prove that the downward translating solitons have bounded principal curvatures.
期刊介绍:
APDE aims to be the leading specialized scholarly publication in mathematical analysis. The full editorial board votes on all articles, accounting for the journal’s exceptionally high standard and ensuring its broad profile.