Coregularity of Fano varieties

Pub Date : 2024-02-10 DOI:10.1007/s10711-023-00882-z
{"title":"Coregularity of Fano varieties","authors":"","doi":"10.1007/s10711-023-00882-z","DOIUrl":null,"url":null,"abstract":"<h3>Abstract</h3> <p>The absolute regularity of a Fano variety, denoted by <span> <span>\\(\\hat{\\textrm{reg}}(X)\\)</span> </span>, is the largest dimension of the dual complex of a log Calabi–Yau structure on <em>X</em>. The absolute coregularity is defined to be <span> <span>$$\\begin{aligned} \\hat{\\textrm{coreg}}(X):= \\dim X - \\hat{\\textrm{reg}}(X)-1. \\end{aligned}$$</span> </span>The coregularity is the complementary dimension of the regularity. We expect that the coregularity of a Fano variety governs, to a large extent, the geometry of <em>X</em>. In this note, we review the history of Fano varieties, give some examples, survey some theorems, introduce the coregularity, and propose several problems regarding this invariant of Fano varieties.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-02-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10711-023-00882-z","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The absolute regularity of a Fano variety, denoted by \(\hat{\textrm{reg}}(X)\) , is the largest dimension of the dual complex of a log Calabi–Yau structure on X. The absolute coregularity is defined to be $$\begin{aligned} \hat{\textrm{coreg}}(X):= \dim X - \hat{\textrm{reg}}(X)-1. \end{aligned}$$ The coregularity is the complementary dimension of the regularity. We expect that the coregularity of a Fano variety governs, to a large extent, the geometry of X. In this note, we review the history of Fano varieties, give some examples, survey some theorems, introduce the coregularity, and propose several problems regarding this invariant of Fano varieties.

分享
查看原文
法诺变种的内核性
摘要 法诺综的绝对正则性用 \(\hat\textrm{reg}}(X)\ 表示。绝对正则性的定义是 $$\begin{aligned}\hat{textrm{coreg}}(X):= \dim X - \hat{textrm{reg}}(X)-1.\end{aligned}$$ 核心规则性是规则性的补充维度。在本注释中,我们回顾了法诺变的历史,举了一些例子,考察了一些定理,介绍了核正则性,并提出了有关法诺变这一不变量的几个问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信