{"title":"Disambiguation of Isolated Manipuri Tonal Contrast Word Pairs using Acoustic Features","authors":"Thiyam Susma Devi, Pradip K. Das","doi":"10.1145/3643830","DOIUrl":null,"url":null,"abstract":"<p>Manipuri is a low-resource, Tibeto-Burman tonal language spoken mainly in Manipur, a northeastern state of India. Tone identification is crucial to speech comprehension for tonal languages, where tone defines the word’s meaning. Automatic Speech Recognition for those languages can perform better by including tonal information from a powerful tone detection system. While significant research has been conducted on tonal languages like Mandarin, Thai, Cantonese and Vietnamese, a notable gap exists in exploring Manipuri within this context. To address this gap, this work expands our previously developed handcrafted speech corpus, ManiTo, which comprises of isolated Manipuri tonal contrast word pairs to study the tones of Manipuri. This extension includes contributions from twenty native speakers. Preliminary findings have confirmed that Manipuri has two unique tones, Falling and Level. The study then conducts a comprehensive acoustic feature analysis. Two sets of features based on Pitch contours, Jitter and Shimmer measurements are investigated to distinguish the two tones of Manipuri. Support Vector Machine, Long Short-Term Memory, Random Forest and k-Nearest Neighbors are the classifiers adopted to validate the selected feature sets. The results indicate that the second set of features consistently outperformed the first set, demonstrating higher accuracy, particularly when utilizing the Random Forest classifier, which provides valuable insights for further advancements in speech recognition technology for low-resource tonal language Manipuri.</p>","PeriodicalId":54312,"journal":{"name":"ACM Transactions on Asian and Low-Resource Language Information Processing","volume":null,"pages":null},"PeriodicalIF":1.8000,"publicationDate":"2024-02-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Asian and Low-Resource Language Information Processing","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1145/3643830","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Manipuri is a low-resource, Tibeto-Burman tonal language spoken mainly in Manipur, a northeastern state of India. Tone identification is crucial to speech comprehension for tonal languages, where tone defines the word’s meaning. Automatic Speech Recognition for those languages can perform better by including tonal information from a powerful tone detection system. While significant research has been conducted on tonal languages like Mandarin, Thai, Cantonese and Vietnamese, a notable gap exists in exploring Manipuri within this context. To address this gap, this work expands our previously developed handcrafted speech corpus, ManiTo, which comprises of isolated Manipuri tonal contrast word pairs to study the tones of Manipuri. This extension includes contributions from twenty native speakers. Preliminary findings have confirmed that Manipuri has two unique tones, Falling and Level. The study then conducts a comprehensive acoustic feature analysis. Two sets of features based on Pitch contours, Jitter and Shimmer measurements are investigated to distinguish the two tones of Manipuri. Support Vector Machine, Long Short-Term Memory, Random Forest and k-Nearest Neighbors are the classifiers adopted to validate the selected feature sets. The results indicate that the second set of features consistently outperformed the first set, demonstrating higher accuracy, particularly when utilizing the Random Forest classifier, which provides valuable insights for further advancements in speech recognition technology for low-resource tonal language Manipuri.
期刊介绍:
The ACM Transactions on Asian and Low-Resource Language Information Processing (TALLIP) publishes high quality original archival papers and technical notes in the areas of computation and processing of information in Asian languages, low-resource languages of Africa, Australasia, Oceania and the Americas, as well as related disciplines. The subject areas covered by TALLIP include, but are not limited to:
-Computational Linguistics: including computational phonology, computational morphology, computational syntax (e.g. parsing), computational semantics, computational pragmatics, etc.
-Linguistic Resources: including computational lexicography, terminology, electronic dictionaries, cross-lingual dictionaries, electronic thesauri, etc.
-Hardware and software algorithms and tools for Asian or low-resource language processing, e.g., handwritten character recognition.
-Information Understanding: including text understanding, speech understanding, character recognition, discourse processing, dialogue systems, etc.
-Machine Translation involving Asian or low-resource languages.
-Information Retrieval: including natural language processing (NLP) for concept-based indexing, natural language query interfaces, semantic relevance judgments, etc.
-Information Extraction and Filtering: including automatic abstraction, user profiling, etc.
-Speech processing: including text-to-speech synthesis and automatic speech recognition.
-Multimedia Asian Information Processing: including speech, image, video, image/text translation, etc.
-Cross-lingual information processing involving Asian or low-resource languages.
-Papers that deal in theory, systems design, evaluation and applications in the aforesaid subjects are appropriate for TALLIP. Emphasis will be placed on the originality and the practical significance of the reported research.