On atoms of the set of generalized numerical semigroups with fixed corner element

Pub Date : 2024-02-14 DOI:10.1007/s00233-024-10412-2
Matheus Bernardini, Alonso S. Castellanos, Wanderson Tenório, Guilherme Tizziotti
{"title":"On atoms of the set of generalized numerical semigroups with fixed corner element","authors":"Matheus Bernardini, Alonso S. Castellanos, Wanderson Tenório, Guilherme Tizziotti","doi":"10.1007/s00233-024-10412-2","DOIUrl":null,"url":null,"abstract":"<p>We study the atomic generalized numerical semigroups (GNSs), which naturally extend the concept of atomic numerical semigroups. We introduce the notion of corner special gap and we characterize the class of atomic GNS in terms of the cardinality of the set of corner special gaps and also in terms of a maximal property. Using this maximal property we present some properties concerning irreducibility of Frobenius GNSs. In particular, we provide sufficient conditions for certain Frobenius GNSs to be atom non-irreducible. Furthermore, we given necessary and sufficient conditions so that the maximal elements of a set of Frobenius GNSs with two fixed gaps to be all irreducible or not.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-02-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00233-024-10412-2","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We study the atomic generalized numerical semigroups (GNSs), which naturally extend the concept of atomic numerical semigroups. We introduce the notion of corner special gap and we characterize the class of atomic GNS in terms of the cardinality of the set of corner special gaps and also in terms of a maximal property. Using this maximal property we present some properties concerning irreducibility of Frobenius GNSs. In particular, we provide sufficient conditions for certain Frobenius GNSs to be atom non-irreducible. Furthermore, we given necessary and sufficient conditions so that the maximal elements of a set of Frobenius GNSs with two fixed gaps to be all irreducible or not.

Abstract Image

分享
查看原文
论具有固定角元素的广义数值半群集合的原子
我们研究原子广义数值半群(GNS),它自然地扩展了原子数值半群的概念。我们引入了角特隙的概念,并根据角特隙集的心数和最大属性描述了原子广义数值半群的特征。利用这个最大属性,我们提出了有关弗罗贝尼斯 GNS 不可还原性的一些属性。特别是,我们提供了某些 Frobenius GNS 是非不可还原原子的充分条件。此外,我们还给出了必要条件和充分条件,以使具有两个固定间隙的弗罗贝尼斯 GNS 集合的最大元素全部不可还原或全部不可还原。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信