{"title":"Boundary Value Problems in a Theory of Bending of Thin Micropolar Plates with Surface Elasticity","authors":"Alireza Gharahi","doi":"10.1007/s10659-024-10051-2","DOIUrl":null,"url":null,"abstract":"<div><p>We generalize a recent theory of bending of thin micropolar plates by incorporating surface effects through the modeling of plate surfaces as adjacent two-dimensional micropolar elastic bodies. By incorporating both elastic surface effects and the micropolar elastic behavior of the plate, the proposed model is capable of taking into account the contribution of high surface-to-volume ratios as well as the influence of microstructural mechanics at micro/nano scales. We determine the fundamental solution of the resulting system of equations and establish uniqueness results for the corresponding Dirichlet and Neumann boundary value problems. Moreover, we provide a numerical example to demonstrate the efficiency of the model in representing the size-dependence arising from various factors that incorporate characteristic lengths. Furthermore, we showcase the sensitivity of the results to different types of characteristic lengths present in the model.</p></div>","PeriodicalId":624,"journal":{"name":"Journal of Elasticity","volume":"156 1","pages":"307 - 324"},"PeriodicalIF":1.8000,"publicationDate":"2024-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Elasticity","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10659-024-10051-2","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
We generalize a recent theory of bending of thin micropolar plates by incorporating surface effects through the modeling of plate surfaces as adjacent two-dimensional micropolar elastic bodies. By incorporating both elastic surface effects and the micropolar elastic behavior of the plate, the proposed model is capable of taking into account the contribution of high surface-to-volume ratios as well as the influence of microstructural mechanics at micro/nano scales. We determine the fundamental solution of the resulting system of equations and establish uniqueness results for the corresponding Dirichlet and Neumann boundary value problems. Moreover, we provide a numerical example to demonstrate the efficiency of the model in representing the size-dependence arising from various factors that incorporate characteristic lengths. Furthermore, we showcase the sensitivity of the results to different types of characteristic lengths present in the model.
期刊介绍:
The Journal of Elasticity was founded in 1971 by Marvin Stippes (1922-1979), with its main purpose being to report original and significant discoveries in elasticity. The Journal has broadened in scope over the years to include original contributions in the physical and mathematical science of solids. The areas of rational mechanics, mechanics of materials, including theories of soft materials, biomechanics, and engineering sciences that contribute to fundamental advancements in understanding and predicting the complex behavior of solids are particularly welcomed. The role of elasticity in all such behavior is well recognized and reporting significant discoveries in elasticity remains important to the Journal, as is its relation to thermal and mass transport, electromagnetism, and chemical reactions. Fundamental research that applies the concepts of physics and elements of applied mathematical science is of particular interest. Original research contributions will appear as either full research papers or research notes. Well-documented historical essays and reviews also are welcomed. Materials that will prove effective in teaching will appear as classroom notes. Computational and/or experimental investigations that emphasize relationships to the modeling of the novel physical behavior of solids at all scales are of interest. Guidance principles for content are to be found in the current interests of the Editorial Board.