{"title":"Study on the Wind Deviation Characteristics of Y-Type Insulator String under the Action of Strong Wind","authors":"Xianren Wang, Chuiwei Yang, Jiaqian Zhang, Junyu Zhou, Hangzhang Liang, Jing Jiang, Yonghui Cai, Mojia Huang, Zhiwen Lan","doi":"10.1155/2024/5542173","DOIUrl":null,"url":null,"abstract":"Under the action of extreme wind load, the overhead transmission line will generate a wind deflection flashover phenomenon, which seriously affects the normal operation of the transmission system and causes significant losses. Y-type insulator string (hereinafter referred to as Y-string) is an optimized structural form to reduce the wind deflection flashover in windy areas, and the dynamic mechanical characteristics of Y-string under the action of pulsating wind is an important factor that influences the design of the overhead transmission line. The calculation method of pulsating wind load and the static calculation method of wind deflection displacement of Y-string are obtained through theoretical derivation. The mathematical software is used to simulate the time course of pulsating wind speed and convert it into the time course of wind load, establish the finite element model of insulator string, simulate and analyze the wind deflection process of Y-string under the action of pulsating wind by using the finite element method, and calculate the horizontal displacement of Y-string under the excitation of pulsating wind and make a comparative analysis with the results of the static calculations. The results show that the wind deflection displacement of the Y-string under pulsating wind is 1.12–1.28 times that under steady-state wind, which reveals the reason for the wind deflection flashover phenomenon and provides theoretical references for the design and improvement of overhead transmission lines.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-02-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1155/2024/5542173","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Under the action of extreme wind load, the overhead transmission line will generate a wind deflection flashover phenomenon, which seriously affects the normal operation of the transmission system and causes significant losses. Y-type insulator string (hereinafter referred to as Y-string) is an optimized structural form to reduce the wind deflection flashover in windy areas, and the dynamic mechanical characteristics of Y-string under the action of pulsating wind is an important factor that influences the design of the overhead transmission line. The calculation method of pulsating wind load and the static calculation method of wind deflection displacement of Y-string are obtained through theoretical derivation. The mathematical software is used to simulate the time course of pulsating wind speed and convert it into the time course of wind load, establish the finite element model of insulator string, simulate and analyze the wind deflection process of Y-string under the action of pulsating wind by using the finite element method, and calculate the horizontal displacement of Y-string under the excitation of pulsating wind and make a comparative analysis with the results of the static calculations. The results show that the wind deflection displacement of the Y-string under pulsating wind is 1.12–1.28 times that under steady-state wind, which reveals the reason for the wind deflection flashover phenomenon and provides theoretical references for the design and improvement of overhead transmission lines.
在极端风荷载作用下,架空输电线路会产生风偏闪络现象,严重影响输电系统的正常运行,造成重大损失。Y型绝缘子串(以下简称Y串)是减少大风地区风偏闪络的优化结构形式,Y串在脉动风作用下的动态力学特性是影响架空输电线路设计的重要因素。通过理论推导得到了脉动风荷载的计算方法和 Y 型绳风挠度位移的静力计算方法。利用数学软件模拟脉动风速的时间过程并转换为风荷载的时间过程,建立绝缘子串的有限元模型,利用有限元法模拟分析 Y 型绳在脉动风作用下的风偏过程,计算 Y 型绳在脉动风激励下的水平位移,并与静力计算结果进行对比分析。结果表明,脉动风作用下 Y 型绳的风挠位移是稳态风作用下的 1.12-1.28 倍,揭示了风挠闪络现象产生的原因,为架空输电线路的设计和改进提供了理论参考。
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.