High-Q-factor multiple Fano resonance for sensitive refractive index sensors based on all-dielectric metasurface

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Zuxiong Liao, Yiping Huo, Tong Liu, Chen Zhao, Tao Zhang, Congmu Xu, Zhongyue Zhang
{"title":"High-Q-factor multiple Fano resonance for sensitive refractive index sensors based on all-dielectric metasurface","authors":"Zuxiong Liao, Yiping Huo, Tong Liu, Chen Zhao, Tao Zhang, Congmu Xu, Zhongyue Zhang","doi":"10.1117/1.jnp.18.016007","DOIUrl":null,"url":null,"abstract":"High-performance sensors can be efficiently realized with an all-dielectric metasurface using high-Q-factor Fano resonance. In this study, a numerical analysis of an all-dielectric metasurface with two square holes and one rectangular hole was conducted. Multiple Fano resonances with a high Q-factor and modulation depth were excited by a toroidal dipole, an electric quadrupole, and a magnetic dipole by breaking the symmetry of the structure. According to the computed results, the modulation depth approached 100%, and the maximum Q-factor reached 90,048. The sensing performance of the structure is also discussed. The structure had a maximum sensitivity and figure of merit of 275 nm/RIU and 1833 RIU−1, respectively. Owing to the unique structure, multiple Fano resonances can be achieved, with applications in multiwavelength communication, multichannel nanosensors, and optical modulators. These resonances have high Q-factors, high modulation depths, and small linewidths.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1117/1.jnp.18.016007","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

High-performance sensors can be efficiently realized with an all-dielectric metasurface using high-Q-factor Fano resonance. In this study, a numerical analysis of an all-dielectric metasurface with two square holes and one rectangular hole was conducted. Multiple Fano resonances with a high Q-factor and modulation depth were excited by a toroidal dipole, an electric quadrupole, and a magnetic dipole by breaking the symmetry of the structure. According to the computed results, the modulation depth approached 100%, and the maximum Q-factor reached 90,048. The sensing performance of the structure is also discussed. The structure had a maximum sensitivity and figure of merit of 275 nm/RIU and 1833 RIU−1, respectively. Owing to the unique structure, multiple Fano resonances can be achieved, with applications in multiwavelength communication, multichannel nanosensors, and optical modulators. These resonances have high Q-factors, high modulation depths, and small linewidths.
基于全介电元表面的灵敏折射率传感器的高 Q 因子多重法诺共振
利用高 Q 因子法诺共振的全介质元表面可以有效地实现高性能传感器。本研究对带有两个方形孔和一个矩形孔的全介质元表面进行了数值分析。通过打破结构的对称性,环偶极子、电四极子和磁偶极子激发了多个具有高 Q 因子和调制深度的法诺共振。根据计算结果,调制深度接近 100%,最大 Q 因子达到 90 048。此外,还讨论了该结构的传感性能。该结构的最大灵敏度和优点系数分别为 275 nm/RIU 和 1833 RIU-1。由于结构独特,可以实现多个法诺共振,可应用于多波长通信、多通道纳米传感器和光调制器。这些共振具有高 Q 因子、高调制深度和小线宽。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信