Hikmat Mohammed Hasan AlAameri, Mehrdad Shokooh-Saremi
{"title":"Guided-mode resonance sensors with high sensitivity and asymmetric structures","authors":"Hikmat Mohammed Hasan AlAameri, Mehrdad Shokooh-Saremi","doi":"10.1117/1.jnp.18.016005","DOIUrl":null,"url":null,"abstract":"An increasing amount of attention is being paid to guided-mode resonance (GMR) sensors since they can effectively detect small refractive indices (RIs) changes due to their narrow spectral linewidth and high efficiency. In this work, a binary, all-dielectric, asymmetric GMR (A-GMR) sensor structure with enhanced sensitivity and narrowed resonant linewidth is proposed to substantially improve the figure of merit (FOM) with respect to symmetric counterparts. To achieve the best performance, particle swarm optimization is employed to optimize the structural parameters. Furthermore, the proposed GMR sensor is compared with dielectric symmetric GMR sensors. High bulk sensitivity of 3157.6 nm/RIU, full width at half maximum down to 0.076 nm, and FOM of 41547.368 (RIU)−1 have been achieved for the A-GMR sensor, showing high-performance RI sensing.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1117/1.jnp.18.016005","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
An increasing amount of attention is being paid to guided-mode resonance (GMR) sensors since they can effectively detect small refractive indices (RIs) changes due to their narrow spectral linewidth and high efficiency. In this work, a binary, all-dielectric, asymmetric GMR (A-GMR) sensor structure with enhanced sensitivity and narrowed resonant linewidth is proposed to substantially improve the figure of merit (FOM) with respect to symmetric counterparts. To achieve the best performance, particle swarm optimization is employed to optimize the structural parameters. Furthermore, the proposed GMR sensor is compared with dielectric symmetric GMR sensors. High bulk sensitivity of 3157.6 nm/RIU, full width at half maximum down to 0.076 nm, and FOM of 41547.368 (RIU)−1 have been achieved for the A-GMR sensor, showing high-performance RI sensing.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.