FINITE ELEMENT–BOUNDARY ELEMENT BASED VIBROACOUSTIC MODEL FOR NONHOMOGENEOUS TURBULENT BOUNDARY LAYER EXCITED COMPOSITE PANELS INVOLVING THE CHOLESKY DECOMPOSITION
{"title":"FINITE ELEMENT–BOUNDARY ELEMENT BASED VIBROACOUSTIC MODEL FOR NONHOMOGENEOUS TURBULENT BOUNDARY LAYER EXCITED COMPOSITE PANELS INVOLVING THE CHOLESKY DECOMPOSITION","authors":"B. R. Adhikary, A. Sahu, P. Bhattacharya","doi":"10.1134/S002189442306024X","DOIUrl":null,"url":null,"abstract":"<p>An original numerical framework is developed in the present research work in order to estimate the free field sound radiation from baffled structural panels subjected to nonhomogeneous turbulent boundary layer flow-induced excitation. A sequence of semi-analytical methods is used to estimate the nonhomogeneous turbulent boundary layer wall pressure spectrum, which is decomposed using the Cholesky technique to obtain the random wall pressure in the frequency domain. Structural panels are modeled using the finite element technique, and a coupled finite element-boundary element modeling technique is developed to estimate the sound power level radiated into the free field. Results are obtained for laminated composite structural panels with various fiber orientations.</p>","PeriodicalId":608,"journal":{"name":"Journal of Applied Mechanics and Technical Physics","volume":"64 6","pages":"1128 - 1140"},"PeriodicalIF":0.5000,"publicationDate":"2024-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Applied Mechanics and Technical Physics","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1134/S002189442306024X","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 0
Abstract
An original numerical framework is developed in the present research work in order to estimate the free field sound radiation from baffled structural panels subjected to nonhomogeneous turbulent boundary layer flow-induced excitation. A sequence of semi-analytical methods is used to estimate the nonhomogeneous turbulent boundary layer wall pressure spectrum, which is decomposed using the Cholesky technique to obtain the random wall pressure in the frequency domain. Structural panels are modeled using the finite element technique, and a coupled finite element-boundary element modeling technique is developed to estimate the sound power level radiated into the free field. Results are obtained for laminated composite structural panels with various fiber orientations.
期刊介绍:
Journal of Applied Mechanics and Technical Physics is a journal published in collaboration with the Siberian Branch of the Russian Academy of Sciences. The Journal presents papers on fluid mechanics and applied physics. Each issue contains valuable contributions on hypersonic flows; boundary layer theory; turbulence and hydrodynamic stability; free boundary flows; plasma physics; shock waves; explosives and detonation processes; combustion theory; multiphase flows; heat and mass transfer; composite materials and thermal properties of new materials, plasticity, creep, and failure.