{"title":"Exploratory Control with Tsallis Entropy for Latent Factor Models","authors":"Ryan Donnelly, Sebastian Jaimungal","doi":"10.1137/22m153505x","DOIUrl":null,"url":null,"abstract":"SIAM Journal on Financial Mathematics, Volume 15, Issue 1, Page 26-53, March 2024. <br/> Abstract. We study optimal control in models with latent factors where the agent controls the distribution over actions, rather than actions themselves, in both discrete and continuous time. To encourage exploration of the state space, we reward exploration with Tsallis entropy and derive the optimal distribution over states—which we prove is [math]-Gaussian distributed with location characterized through the solution of an BS[math]E and BSDE in discrete and continuous time, respectively. We discuss the relation between the solutions of the optimal exploration problems and the standard dynamic optimal control solution. Finally, we develop the optimal policy in a model-agnostic setting along the lines of soft [math]-learning. The approach may be applied in, e.g., developing more robust statistical arbitrage trading strategies.","PeriodicalId":48880,"journal":{"name":"SIAM Journal on Financial Mathematics","volume":"12 1","pages":""},"PeriodicalIF":1.4000,"publicationDate":"2024-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"SIAM Journal on Financial Mathematics","FirstCategoryId":"96","ListUrlMain":"https://doi.org/10.1137/22m153505x","RegionNum":4,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BUSINESS, FINANCE","Score":null,"Total":0}
引用次数: 0
Abstract
SIAM Journal on Financial Mathematics, Volume 15, Issue 1, Page 26-53, March 2024. Abstract. We study optimal control in models with latent factors where the agent controls the distribution over actions, rather than actions themselves, in both discrete and continuous time. To encourage exploration of the state space, we reward exploration with Tsallis entropy and derive the optimal distribution over states—which we prove is [math]-Gaussian distributed with location characterized through the solution of an BS[math]E and BSDE in discrete and continuous time, respectively. We discuss the relation between the solutions of the optimal exploration problems and the standard dynamic optimal control solution. Finally, we develop the optimal policy in a model-agnostic setting along the lines of soft [math]-learning. The approach may be applied in, e.g., developing more robust statistical arbitrage trading strategies.
期刊介绍:
SIAM Journal on Financial Mathematics (SIFIN) addresses theoretical developments in financial mathematics as well as breakthroughs in the computational challenges they encompass. The journal provides a common platform for scholars interested in the mathematical theory of finance as well as practitioners interested in rigorous treatments of the scientific computational issues related to implementation. On the theoretical side, the journal publishes articles with demonstrable mathematical developments motivated by models of modern finance. On the computational side, it publishes articles introducing new methods and algorithms representing significant (as opposed to incremental) improvements on the existing state of affairs of modern numerical implementations of applied financial mathematics.