Fano 4-folds with $b_{2}>12$ are products of surfaces

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
C. Casagrande
{"title":"Fano 4-folds with $b_{2}>12$ are products of surfaces","authors":"C. Casagrande","doi":"10.1007/s00222-024-01236-6","DOIUrl":null,"url":null,"abstract":"<p>Let <span>\\(X\\)</span> be a smooth, complex Fano 4-fold, and <span>\\(\\rho _{X}\\)</span> its Picard number. We show that if <span>\\(\\rho _{X}&gt;12\\)</span>, then <span>\\(X\\)</span> is a product of del Pezzo surfaces. The proof relies on a careful study of divisorial elementary contractions <span>\\(f\\colon X\\to Y\\)</span> such that <span>\\(\\dim f(\\operatorname{Exc}(f))=2\\)</span>, together with the author’s previous work on Fano 4-folds. In particular, given <span>\\(f\\colon X\\to Y\\)</span> as above, under suitable assumptions we show that <span>\\(S:=f(\\operatorname{Exc}(f))\\)</span> is a smooth del Pezzo surface with <span>\\(-K_{S}=(-K_{Y})_{|S}\\)</span>.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00222-024-01236-6","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

Abstract

Let \(X\) be a smooth, complex Fano 4-fold, and \(\rho _{X}\) its Picard number. We show that if \(\rho _{X}>12\), then \(X\) is a product of del Pezzo surfaces. The proof relies on a careful study of divisorial elementary contractions \(f\colon X\to Y\) such that \(\dim f(\operatorname{Exc}(f))=2\), together with the author’s previous work on Fano 4-folds. In particular, given \(f\colon X\to Y\) as above, under suitable assumptions we show that \(S:=f(\operatorname{Exc}(f))\) is a smooth del Pezzo surface with \(-K_{S}=(-K_{Y})_{|S}\).

Abstract Image

b_{2}>12$的法诺4折叠是曲面的乘积
让 \(X\) 是一个光滑、复杂的法诺 4 折叠,\(\rho _{X}\)是它的皮卡尔数。我们证明,如果 \(\rho_{X}>12\),那么 \(X\)就是德尔佩佐曲面的乘积。这个证明依赖于对除法基本收缩 \(f\colon X\to Y\) such that \(\dim f(\operatorname{Exc}(f))=2\) 的仔细研究,以及作者之前关于法诺 4 折叠的工作。特别是,给定上述 \(f\colon X\to Y\), 在合适的假设条件下,我们证明 \(S:=f(\operatorname{Exc}(f))\) 是一个光滑的德尔佩佐曲面,具有 \(-K_{S}=(-K_{Y})_{|S}\)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信