Wilson spaces, snaith constructions, and elliptic orientations

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
Hood Chatham, Jeremy Hahn, Allen Yuan
{"title":"Wilson spaces, snaith constructions, and elliptic orientations","authors":"Hood Chatham, Jeremy Hahn, Allen Yuan","doi":"10.1007/s00222-024-01239-3","DOIUrl":null,"url":null,"abstract":"<p>We construct a canonical family of even periodic <span>\\(\\mathbb{E}_{\\infty}\\)</span>-ring spectra, with exactly one member of the family for every prime <span>\\(p\\)</span> and chromatic height <span>\\(n\\)</span>. At height 1 our construction is due to Snaith, who built complex <span>\\(K\\)</span>-theory from <span>\\(\\mathbb{CP}^{\\infty}\\)</span>. At height 2 we replace <span>\\(\\mathbb{CP}^{\\infty}\\)</span> with a <span>\\(p\\)</span>-local retract of <span>\\(\\mathrm{BU} \\langle 6 \\rangle \\)</span>, producing a new theory that orients elliptic, but not generic, height 2 Morava <span>\\(E\\)</span>-theories.</p><p>In general our construction exhibits a kind of redshift, whereby <span>\\(\\mathrm{BP}\\langle n-1 \\rangle \\)</span> is used to produce a height <span>\\(n\\)</span> theory. A familiar sequence of Bocksteins, studied by Tamanoi, Ravenel, Wilson, and Yagita, relates the <span>\\(K(n)\\)</span>-localization of our height <span>\\(n\\)</span> ring to work of Peterson and Westerland building <span>\\(E_{n}^{hS\\mathbb{G}^{\\pm}}\\)</span> from <span>\\(\\mathrm{K}(\\mathbb{Z},n+1)\\)</span>.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-02-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00222-024-01239-3","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

Abstract

We construct a canonical family of even periodic \(\mathbb{E}_{\infty}\)-ring spectra, with exactly one member of the family for every prime \(p\) and chromatic height \(n\). At height 1 our construction is due to Snaith, who built complex \(K\)-theory from \(\mathbb{CP}^{\infty}\). At height 2 we replace \(\mathbb{CP}^{\infty}\) with a \(p\)-local retract of \(\mathrm{BU} \langle 6 \rangle \), producing a new theory that orients elliptic, but not generic, height 2 Morava \(E\)-theories.

In general our construction exhibits a kind of redshift, whereby \(\mathrm{BP}\langle n-1 \rangle \) is used to produce a height \(n\) theory. A familiar sequence of Bocksteins, studied by Tamanoi, Ravenel, Wilson, and Yagita, relates the \(K(n)\)-localization of our height \(n\) ring to work of Peterson and Westerland building \(E_{n}^{hS\mathbb{G}^{\pm}}\) from \(\mathrm{K}(\mathbb{Z},n+1)\).

威尔逊空间、斯奈斯构造和椭圆定向
我们构建了一个偶周期性(\mathbb{E}_{\infty}\)-环谱的典型家族,对于每个素数(p)和色度高度(n),家族中都有一个成员。在高度 1 上,我们的构造归功于斯奈思,他从\(\mathbb{CP}^{\infty}\)建立了复\(K\)理论。在高度2上,我们用(\mathrm{BU} \langle 6 \rangle \)的\(p\)-局部回缩取代了\(\mathbb{CP}^{\infty}\),产生了一个新的理论,它定向于椭圆的,但不是一般的,高度2的莫拉瓦\(E\)-理论。一般来说,我们的构造表现出一种再移位,即用(\mathrm{BP}\langle n-1 \rangle)产生一个高度(n)理论。由塔马诺伊(Tamanoi)、雷文尔(Ravenel)、威尔逊(Wilson)和雅吉塔(Yagita)研究的博克斯特恩(Bocksteins)序列,将我们的高度(n)环的(K(n))定位与彼得森(Peterson)和韦斯特兰(Westerland)从(\\mathrm{K}(\mathbb{Z},n+1))建立(E_{n}^{hSmathbb{G}^{\pm}})的工作联系起来。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信