{"title":"A characterization of translation and modulation invariant Hilbert space of tempered distributions","authors":"Shubham R. Bais, Pinlodi Mohan, D. Venku Naidu","doi":"10.1007/s00013-023-01964-w","DOIUrl":null,"url":null,"abstract":"<div><p>Let <span>\\(\\mathcal {S}(\\mathbb {R}^n)\\)</span> be the Schwartz space and <span>\\(\\mathcal {S'}(\\mathbb {R}^n)\\)</span> be the space of tempered distributions on <span>\\(\\mathbb {R}^n\\)</span>. In this article, we prove that if <span>\\(\\mathcal {H} \\subseteq \\mathcal {S'}(\\mathbb {R}^n)\\)</span> is a non-zero Hilbert space of tempered distributions which is translation and modulation invariant such that </p><div><div><span>$$\\begin{aligned} |(f,g)| \\le C \\Vert f\\Vert _{\\mathcal {H}} \\end{aligned}$$</span></div></div><p>for some <span>\\(C>0\\)</span> and for all <span>\\(f\\in \\mathcal {H}\\)</span>, then <span>\\(\\mathcal {H}=L^2(\\mathbb {R}^n)\\)</span>, where <span>\\(g(x) = e^{-x^2}\\)</span> for all <span>\\(x\\in \\mathbb {R}^n\\)</span> and <span>\\((\\cdot , \\cdot )\\)</span> denotes the standard duality pairing between <span>\\(\\mathcal {S'}(\\mathbb {R}^n)\\)</span> and <span>\\(\\mathcal {S}(\\mathbb {R}^n)\\)</span> with respect to which <span>\\((\\mathcal {S}(\\mathbb {R}^n))^*=\\mathcal {S'}(\\mathbb {R}^n)\\)</span>.</p></div>","PeriodicalId":8346,"journal":{"name":"Archiv der Mathematik","volume":"122 4","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2024-02-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Archiv der Mathematik","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s00013-023-01964-w","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
Let \(\mathcal {S}(\mathbb {R}^n)\) be the Schwartz space and \(\mathcal {S'}(\mathbb {R}^n)\) be the space of tempered distributions on \(\mathbb {R}^n\). In this article, we prove that if \(\mathcal {H} \subseteq \mathcal {S'}(\mathbb {R}^n)\) is a non-zero Hilbert space of tempered distributions which is translation and modulation invariant such that
$$\begin{aligned} |(f,g)| \le C \Vert f\Vert _{\mathcal {H}} \end{aligned}$$
for some \(C>0\) and for all \(f\in \mathcal {H}\), then \(\mathcal {H}=L^2(\mathbb {R}^n)\), where \(g(x) = e^{-x^2}\) for all \(x\in \mathbb {R}^n\) and \((\cdot , \cdot )\) denotes the standard duality pairing between \(\mathcal {S'}(\mathbb {R}^n)\) and \(\mathcal {S}(\mathbb {R}^n)\) with respect to which \((\mathcal {S}(\mathbb {R}^n))^*=\mathcal {S'}(\mathbb {R}^n)\).
期刊介绍:
Archiv der Mathematik (AdM) publishes short high quality research papers in every area of mathematics which are not overly technical in nature and addressed to a broad readership.