On the finiteness of radii of resolving subcategories

IF 0.5 4区 数学 Q3 MATHEMATICS
Yuki Mifune
{"title":"On the finiteness of radii of resolving subcategories","authors":"Yuki Mifune","doi":"10.1007/s00013-024-01965-3","DOIUrl":null,"url":null,"abstract":"<div><p>Let <i>R</i> be a commutative Noetherian ring. Denote by <span>\\({\\text {mod}}R\\)</span> the category of finitely generated <i>R</i>-modules. In this paper, we investigate the finiteness of the radii of resolving subcategories of <span>\\({\\text {mod}}R\\)</span> with respect to a fixed semidualizing module. As an application, we give a partial positive answer to a conjecture of Dao and Takahashi: we prove that for a Cohen–Macaulay local ring <i>R</i>, a resolving subcategory of <span>\\({\\text {mod}}R\\)</span> has infinite radius whenever it contains a canonical module and a non-MCM module of finite injective dimension.</p></div>","PeriodicalId":8346,"journal":{"name":"Archiv der Mathematik","volume":"122 4","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2024-02-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Archiv der Mathematik","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s00013-024-01965-3","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Let R be a commutative Noetherian ring. Denote by \({\text {mod}}R\) the category of finitely generated R-modules. In this paper, we investigate the finiteness of the radii of resolving subcategories of \({\text {mod}}R\) with respect to a fixed semidualizing module. As an application, we give a partial positive answer to a conjecture of Dao and Takahashi: we prove that for a Cohen–Macaulay local ring R, a resolving subcategory of \({\text {mod}}R\) has infinite radius whenever it contains a canonical module and a non-MCM module of finite injective dimension.

论解析子范畴半径的有限性
让 R 是交换诺特环。用 \({\text {mod}}R\ 表示有限生成的 R 模块范畴。在本文中,我们将研究 \({\text {mod}R\) 的解析子类的半径相对于一个固定的半化模块的有限性。作为应用,我们给出了 Dao 和 Takahashi 的猜想的部分肯定答案:我们证明了对于科恩-麦考莱局部环 R,只要它包含一个规范化模块和一个有限注入维度的非 MCM 模块,\({\text {mod}R\) 的解析子类就有无限的半径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Archiv der Mathematik
Archiv der Mathematik 数学-数学
CiteScore
1.10
自引率
0.00%
发文量
117
审稿时长
4-8 weeks
期刊介绍: Archiv der Mathematik (AdM) publishes short high quality research papers in every area of mathematics which are not overly technical in nature and addressed to a broad readership.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信