{"title":"On a new absolute version of Siegel’s lemma","authors":"","doi":"10.1007/s40687-024-00422-5","DOIUrl":null,"url":null,"abstract":"<h3>Abstract</h3> <p>We establish a new version of Siegel’s lemma over a number field <em>k</em>, providing a bound on the maximum of heights of basis vectors of a subspace of <span> <span>\\(k^N\\)</span> </span>, <span> <span>\\(N \\ge 2\\)</span> </span>. In addition to the small-height property, the basis vectors we obtain satisfy certain sparsity condition. Further, we produce a nontrivial bound on the heights of all the possible subspaces generated by subcollections of these basis vectors. Our bounds are absolute in the sense that they do not depend on the field of definition. The main novelty of our method is that it uses only linear algebra and does not rely on the geometry of numbers or the Dirichlet box principle employed in the previous works on this subject.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-02-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s40687-024-00422-5","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
We establish a new version of Siegel’s lemma over a number field k, providing a bound on the maximum of heights of basis vectors of a subspace of \(k^N\), \(N \ge 2\). In addition to the small-height property, the basis vectors we obtain satisfy certain sparsity condition. Further, we produce a nontrivial bound on the heights of all the possible subspaces generated by subcollections of these basis vectors. Our bounds are absolute in the sense that they do not depend on the field of definition. The main novelty of our method is that it uses only linear algebra and does not rely on the geometry of numbers or the Dirichlet box principle employed in the previous works on this subject.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.